【題目】二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,給出下列結論:①b2-4ac>0;②2a+b<0;③4a-2b+c=0;④a∶b∶c=-1∶2∶3.其中正確的是( )
A. ①② B. ②③ C. ③④ D. ①④
科目:初中數學 來源: 題型:
【題目】某商店需要購進甲、乙兩種商品共160件,其進價和售價如下表:(注:獲利=售價-進價)
(1)若商店計劃銷售完這批商品后能獲利1100元,問甲、乙兩種商品應分別購進多少件?
(2)若商店計劃投入資金少于4300元,且銷售完這批商品后獲利多于1260元,請問有哪幾種購貨方案?并直接寫出其中獲利最大的購貨方案。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一只不透明的袋子中裝有4個大小、質地都相同的乒乓球,球面上分別標有數字1、2、3、4.
(1)攪勻后從中任意摸出1個球,求摸出的乒乓球球面上數字為1的概率;
(2)攪勻后先從中任意摸出1個球(不放回),再從余下的3個球中任意摸出1個球,求2次摸出的乒乓球球面上數字之和為偶數的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一平面中,兩條直線相交有一個交點;三條直線兩兩相交最多有3個交點;四條直線兩兩相交最多有6個交點……當相交直線的條數從2至n變化時,最多可有的交點數m與直線條數n之間的關系如下表:
則m與n的關系式為:___.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在的正方形網格中,從點出發(fā)的四條線段,,,,它的另一個端點,,,均在格點上(正方形網格的交點).
(1)若每個小正方形的邊長都是1,分別求出,,,的長度(結果保留根號).
(2)在,,,四條線段中,是否存在三條線段,它們能構成直角三角形?如果存在,請指出是哪三條線段,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場計劃購進A、B兩種商品,若購進A種商品2件和B種商品1件需45元;若購進A種商品3件和B種商品2件需70元.
(1)A、B兩種商品每件的進價分別是多少元?
(2)若購進A、B兩種商品共100件,總費用不超過1000元,最多能購進A種商品多少件?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某水果店以4元/千克的價格購進一批水果,由于銷售狀況良好,該店又再次購進同一種水果,第二次進貨價格比第一次每千克便宜了1元,所購水果重量恰好是第一次購進水果重量的2倍,這樣該水果店兩次購進水果共花去了2000元.
(1)該水果店兩次分別購買了多少元的水果?
(2)在銷售中,盡管兩次進貨的價格不同,但水果店仍以相同的價格售出,若第一次購進的水果有3% 的損耗,第二次購進的水果有4% 的損耗,該水果店希望售完這些水果獲利不低于3780元,則該水果每千克售價至少為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了打造區(qū)域中心城市,實現攀枝花跨越式發(fā)展,我市花城新區(qū)建設正按投資計劃有序推進.花城新區(qū)建設工程部,因道路建設需要開挖土石方,計劃每小時挖掘土石方540m3 , 現決定向某大型機械租賃公司租用甲、乙兩種型號的挖掘機來完成這項工作,租賃公司提供的挖掘機有關信息如下表所示:
租金(單位:元/臺時) | 挖掘土石方量(單位:m3/臺時) | |
甲型挖掘機 | 100 | 60 |
乙型挖掘機 | 120 | 80 |
(1)若租用甲、乙兩種型號的挖掘機共8臺,恰好完成每小時的挖掘量,則甲、乙兩種型號的挖掘機各需多少臺?
(2)如果每小時支付的租金不超過850元,又恰好完成每小時的挖掘量,那么共有哪幾種不同的租用方案?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】古希臘著名的畢達哥拉斯學派把1,3,6,10,…這樣的數稱為“三角形數”,而把1,4,9,16,…這樣的數稱為“正方形數”.從圖中可以發(fā)現,任何一個大于1的“正方形數”都可以看作兩個相鄰“三角形數”之和.下列等式中,符合這一規(guī)律的是( )
A. 9=4+5B. C. D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com