【題目】如圖1,直角三角形DEF與直角三角形ABC的斜邊在同一直線上,∠EDF=30°,∠ABC=40°,CD平分∠ACB,將△DEF繞點(diǎn)D按逆時(shí)針?lè)较蛐D(zhuǎn),記∠ADF為α(0°<α<180°),在旋轉(zhuǎn)過(guò)程中;
(1)如圖2,當(dāng)∠α= 時(shí),,當(dāng)∠α= 時(shí),DE⊥BC;
(2)如圖3,當(dāng)頂點(diǎn)C在△DEF內(nèi)部時(shí),邊DF、DE分別交BC、AC的延長(zhǎng)線于點(diǎn)M、N,
①此時(shí)∠α的度數(shù)范圍是 ;
②∠1與∠2度數(shù)的和是否變化?若不變求出∠1與∠2度數(shù)和;若變化,請(qǐng)說(shuō)明理由;
③若使得∠2≥2∠1,求∠α的度數(shù)范圍.
【答案】(1)10°,100°;(2)①55°<α<85°;②∠1與∠2度數(shù)的和不變,理由見(jiàn)解析③55°<α≤60°.
【解析】
(1)當(dāng)∠EDA=∠B=40°時(shí),,得出30°+α=40°,即可得出結(jié)果;當(dāng)時(shí),DE⊥AB,得出50°+α+30°=180°,即可得出結(jié)果;
(2)①由已知得出∠ACD=45°,∠A=50°,推出∠CDA=85°,當(dāng)點(diǎn)C在DE邊上時(shí),α+30°=85°,解得α=55°,當(dāng)點(diǎn)C在DF邊上時(shí),α=85°,即可得出結(jié)果;
②連接MN,由三角形內(nèi)角和定理得出∠CNM+∠CMN+∠MCN=180°,則∠CNM+∠CMN=90°,由三角形內(nèi)角和定理得出∠DNM+∠DMN+∠MDN=180°,即∠2+∠CNM+∠CMN+∠1+∠MDN=180°,即可得出結(jié)論;
③由,∠1+∠2=60°,得出∠2≥2(60°∠2),解得∠2≥40°,由三角形內(nèi)角和定理得出∠2+∠NDM+α+∠A=180°,即∠2+30°+α+50°=180°,則∠2=100°α,得出100°α≥40°,解得α≤60°,再由當(dāng)頂點(diǎn)C在△DEF內(nèi)部時(shí),55°<α<85°,即可得出結(jié)果.
解:(1)∵∠B=40°,
∴當(dāng)∠EDA=∠B=40°時(shí),,
而∠EDF=30°,
∴,
解得:α=10°;
當(dāng)時(shí),DE⊥AB,
此時(shí)∠A+∠EDA=180°,
,
∴,
解得:α=100°;
故答案為10°,100°;
(2)①∵∠ABC=40°,CD平分∠ACB,
∴∠ACD=45°,∠A=50°,
∴∠CDA=85°,
當(dāng)點(diǎn)C在DE邊上時(shí),,
解得:,
當(dāng)點(diǎn)C在DF邊上時(shí),,
∴當(dāng)頂點(diǎn)C在△DEF內(nèi)部時(shí),;
故答案為:;
②∠1與∠2度數(shù)的和不變;理由如下:連接MN,如圖所示:
在△CMN中,∵∠CNM+∠CMN+∠MCN=180°,
∴∠CNM+∠CMN=90°,
在△MND中,∵∠DNM+∠DMN+∠MDN=180°,
即∠2+∠CNM+∠CMN+∠1+∠MDN=180°,
∴;
③∵∠2≥2∠1,∠1+∠2=60°,
∴,
∴∠2≥40°,
∵,
即,
∴,
∴,
解得:α≤60°,
∵當(dāng)頂點(diǎn)C在△DEF內(nèi)部時(shí),,
∴∠α的度數(shù)范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點(diǎn)E,F分別在AD,BC上,將紙片ABCD沿直線EF折疊,點(diǎn)C落在AD上的一點(diǎn)H處,點(diǎn)D落在點(diǎn)G處,有以下四個(gè)結(jié)論:①HE=HF;②EC平分∠DCH;③線段BF的取值范圍為3≤BF≤4;④當(dāng)點(diǎn)H與點(diǎn)A重合時(shí),EF=2.以上結(jié)論中,你認(rèn)為正確的有( 。﹤(gè).
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)今年2月份的營(yíng)業(yè)額為400萬(wàn)元,3月份的營(yíng)業(yè)額比2月份增加10%,5月份的營(yíng)業(yè)額達(dá)到633.6萬(wàn)元.求3月份到5月份營(yíng)業(yè)額的月平均增長(zhǎng)率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】鎮(zhèn)江市旅游局為了亮化某景點(diǎn),在兩條筆直且互相平行的景觀道MN、QP上分別放置A、B兩盞激光燈,如圖所示.A燈發(fā)出的光束自AM逆時(shí)針旋轉(zhuǎn)至AN便立即回轉(zhuǎn);B燈發(fā)出的光束自BP逆時(shí)針旋轉(zhuǎn)至BQ便立即回轉(zhuǎn),兩燈不間斷照射,A燈每秒轉(zhuǎn)動(dòng)12°,B燈每秒轉(zhuǎn)動(dòng)4°.B燈先轉(zhuǎn)動(dòng)12秒,A燈才開(kāi)始轉(zhuǎn)動(dòng).當(dāng)B燈光束第一次到達(dá)BQ之前,兩燈的光束互相平行時(shí)A燈旋轉(zhuǎn)的時(shí)間是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)市委市政府提出的建設(shè)“綠色襄陽(yáng)”的號(hào)召,我市某單位準(zhǔn)備將院內(nèi)一塊長(zhǎng)30m,寬20m的長(zhǎng)方形空地,建成一個(gè)矩形花園.要求在花園中修兩條縱向平行和一條橫向彎折的小道,剩余的地方種植花草,如圖所示,要使種植花草的面積為532m2,那么小道進(jìn)出口的寬度應(yīng)為多少米?(注:所有小道進(jìn)出口的寬度相等,且每段小道均為平行四邊形)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究與解決問(wèn)題:已知中,,,求它的面積是多少?為此請(qǐng)你進(jìn)行探究,并解答所提問(wèn)題:
(1)已知三邊長(zhǎng)求三角形面積,還需要知道什么?怎么作輔助線?
(2)解:作____________所得三角形和的邊之間有什么重要關(guān)系?
(3)設(shè),分別在兩個(gè)直角三角形中用含的式子表示,并完成解答,求出的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方形ABCD中,AB=8,AD=10,點(diǎn)E為BC上一點(diǎn),將△ABE沿AE折疊,使點(diǎn)B落在長(zhǎng)方形內(nèi)點(diǎn)F處,且DF=6.
(1)試說(shuō)明:△ADF是直角三角形;
(2)求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某初中學(xué)校組織200位同學(xué)參加義務(wù)植樹(shù)活動(dòng),每人植樹(shù)的棵數(shù)在5至10之間.甲同學(xué)抽查了30位同學(xué)的植樹(shù)情況,并將收集的數(shù)據(jù)進(jìn)行了整理,繪制成統(tǒng)計(jì)表如下:(單位:棵)
每人植樹(shù)情況 | 6 | 7 | 8 | 9 | 10 |
人數(shù) | 3 | 6 | 3 | 11 | 6 |
人數(shù)/抽查總?cè)藬?shù) | 0.1 | 0.2 | 0.1 | 0.4 | 0.2 |
根據(jù)以上材料回答下列問(wèn)題:
(1)此表的最后兩列中有一個(gè)錯(cuò)誤的數(shù)據(jù),這個(gè)錯(cuò)誤的數(shù)據(jù)是________,正確的數(shù)據(jù)應(yīng)該是________;
(2)表中30位同學(xué)植樹(shù)情況的中位數(shù)是________棵,眾數(shù)是________棵;
(3)并用該樣本估計(jì)本次活動(dòng)200位同學(xué)一共植樹(shù)多少棵?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,將矩形ABCD折疊,使BC落在對(duì)角線BD上,折痕為BE,點(diǎn)C落在點(diǎn)C′處,若∠ADB=46°,則∠DBE的度數(shù)為 °.
(2)小明手中有一張矩形紙片ABCD,AB=4,AD=9.
(畫(huà)一畫(huà))
如圖2,點(diǎn)E在這張矩形紙片的邊AD上,將紙片折疊,使AB落在CE所在直線上,折痕設(shè)為MN(點(diǎn)M,N分別在邊AD,BC上),利用直尺和圓規(guī)畫(huà)出折痕MN(不寫(xiě)作法,保留作圖痕跡,并用黑色水筆把線段描清楚);
(算一算)
如圖3,點(diǎn)F在這張矩形紙片的邊BC上,將紙片折疊,使FB落在射線FD上,折痕為GF,點(diǎn)A,B分別落在點(diǎn)A′,B′處,若AG=,求B′D的長(zhǎng);
(驗(yàn)一驗(yàn))
如圖4,點(diǎn)K在這張矩形紙片的邊AD上,DK=3,將紙片折疊,使AB落在CK所在直線上,折痕為HI,點(diǎn)A,B分別落在點(diǎn)A′,B′處,小明認(rèn)為B′I所在直線恰好經(jīng)過(guò)點(diǎn)D,他的判斷是否正確,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com