【題目】已知:點(diǎn)O到△ABC的兩邊AB、AC所在直線的距離OD=OE,且OB=OC.
(1)如圖,若點(diǎn)O在BC上,求證:AB=AC;
(2)如圖,若點(diǎn)O在△ABC的內(nèi)部,求證:AB=AC;
(3)若點(diǎn)O在△ABC的外部,AB=AC成立嗎?請畫圖表示.
【答案】(1)證明見解析;(2)證明見解析.
【解析】試題分析:(1)求證AB=AC,就是求證∠B=∠C,可通過構(gòu)建全等三角形來求.過點(diǎn)O分別作OE⊥AB于E,OF⊥AC于F,那么可以用斜邊直角邊定理(HL)證明Rt△OEB≌Rt△OFC來實(shí)現(xiàn);(2)首先得出Rt△OEB≌Rt△OFC,進(jìn)而得出AB=AC;(3)不一定成立,當(dāng)∠A的平分線所在直線與邊BC的垂直平分線重合時,有AB=AC;否則,AB≠AC.
試題解析:(1)證明:過點(diǎn)O分別作OE⊥AB于E,OF⊥AC于F,
由題意知,
在Rt△OEB和Rt△OFC中
∴Rt△OEB≌Rt△OFC(HL),
∴∠ABC=∠ACB,
∴AB=AC;
(2)證明:過點(diǎn)O分別作OE⊥AB于E,OF⊥AC于F,
由題意知,OE=OF.∠BEO=∠CFO=90°,
∵在Rt△OEB和Rt△OFC中
∴Rt△OEB≌Rt△OFC(HL),
∴∠OBE=∠OCF,
又∵OB=OC,
∴∠OBC=∠OCB,
∴∠ABC=∠ACB,
∴AB=AC;
(3)不一定成立,當(dāng)∠A的平分線所在直線與邊BC的垂直平分線重合時AB=AC,否則AB≠AC.(如圖)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了打造區(qū)域中心城市,實(shí)現(xiàn)攀枝花跨越式發(fā)展,我市花城新區(qū)建設(shè)正按投資計(jì)劃有序推進(jìn).花城新區(qū)建設(shè)工程部,因道路建設(shè)需要開挖土石方,計(jì)劃每小時挖掘土石方540m3,現(xiàn)決定向某大型機(jī)械租賃公司租用甲、乙兩種型號的挖掘機(jī)來完成這項(xiàng)工作,租賃公司提供的挖掘機(jī)有關(guān)信息如表:
(1)若租用甲、乙兩種型號的挖掘機(jī)共8臺,恰好完成每小時的挖掘量,則甲、乙兩種型號的挖掘機(jī)各需多少臺?
(2)請你設(shè)計(jì)一種方案,不僅每小時支付的租金最少,又恰好能完成每小時的挖掘量?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知直線和與軸分別相交于點(diǎn)和點(diǎn),設(shè)兩直線相交于點(diǎn),點(diǎn)為的中點(diǎn),點(diǎn)是線段上一個動點(diǎn)(不與點(diǎn)和重合),連結(jié),并過點(diǎn)作交于點(diǎn).
()判斷的形狀,并說明理由.
()當(dāng)點(diǎn)在線段上運(yùn)動時,四邊形的面積是否為定值?若是,請求出這個定值;若不是,請說明理由.
()當(dāng)點(diǎn)的橫坐標(biāo)為時,在軸上找到一點(diǎn)使得的周長最小,請直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)報名參加校運(yùn)動會,有以下5個項(xiàng)目可供選擇:
徑賽項(xiàng)目:100m,200m,400m(分別用A1、A2、A3表示);
田賽項(xiàng)目:跳遠(yuǎn),跳高(分別用B1、B2表示).
(1)該同學(xué)從5個項(xiàng)目中任選一個,恰好是田賽項(xiàng)目的概率為________;
(2)該同學(xué)從5個項(xiàng)目中任選兩個,利用樹狀圖或列表列舉出所有可能出現(xiàn)的結(jié)果,并求恰好是一個田賽項(xiàng)目和一個徑賽項(xiàng)目的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠A=∠C=45°,∠ADB=∠ABC=105°.
(1)若AD=2,求AB;
(2)若AB+CD=,求AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的方格圖中,我們稱每個小正方形的頂點(diǎn)為“格點(diǎn)”,以格點(diǎn)為頂點(diǎn)的三角形叫做“格點(diǎn)三角形”,根據(jù)圖形,回答下列問題.
(1)圖中格點(diǎn)△A′B′C′是由格點(diǎn)△ABC通過怎樣的變換得到的?
(2)如果以直線a、b為坐標(biāo)軸建立平面直角坐標(biāo)系后,點(diǎn)A的坐標(biāo)為(﹣3,4),請寫出格點(diǎn)△DEF各頂點(diǎn)的坐標(biāo),并求出△DEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠1=∠2,則不一定能使△ABD≌△ACD的條件是 ( )
A. AB=AC B. BD=CD C. ∠B=∠C D. ∠BDA=∠CDA
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)的圖象經(jīng)過P(-2·3).
(1)求此反比例函數(shù)的解析式;
(2)點(diǎn)A(2.-3)、B(3,2)是否在這個函數(shù)的圖象上?
(3)這個函數(shù)的圖象位于哪些象限?函數(shù)值y隨自變量x的減小如何變化?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與軸交于, 兩點(diǎn),與軸交于點(diǎn).
()求拋物線的解析式.
()設(shè)拋物線的頂點(diǎn)為,點(diǎn)在拋物線的對稱軸上,且,求點(diǎn)的坐標(biāo).
()點(diǎn)在直線上方的拋物線上,是否存在點(diǎn)使的面積最大,若存在,請求出點(diǎn)坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com