【題目】如圖,中,, 點(diǎn)在線段的延長(zhǎng)線上, 連接AD,CD=1,BC=12,∠DAB=30°, 則__________.
【答案】4
【解析】
過(guò)點(diǎn)B作BE⊥AD于點(diǎn)E,AH⊥BC于H.設(shè)AB=AC=x.根據(jù)AE+DE=AD,分別利用勾股定理求出AE,DE,AD,構(gòu)建方程即可解決問(wèn)題.
解:過(guò)點(diǎn)B作BE⊥AD于點(diǎn)E,AH⊥BC于H.設(shè)AB=AC=x.
在Rt△ABE中,
∵∠BAE=30°,AB=x,
∴BE=AB=x,AE=BE= x,
∵AB=AC,AH⊥BC,
∴CH=BH=6,
在Rt△AHB中,AH2=x2-62,
在Rt△DBE中,DE=,
在Rt△ADH中,AD=.
∵AE+DE=AD,
∴,
整理得:x4-13×51x-(12×13)2=0,
解得x2=13×48或13×3(舍去),
∵x>0,
∴x=4,
經(jīng)檢驗(yàn):x=4是無(wú)理方程的解,
∴AC=4,
故答案為4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】實(shí)踐操作
如圖,是直角三角形,,利用直尺和圓規(guī)按下列要求作圖,并在圖中表明相應(yīng)的字母.(保留作圖痕跡,不寫(xiě)作法)
(1)①作的平分線,交于點(diǎn);②以為圓心,為半徑作圓.
綜合運(yùn)用
在你所作的圖中,
(2)與⊙的位置關(guān)系是 ;(直接寫(xiě)出答案)
(3)若,,求⊙的半徑.
(4)在(3)的條件下,求以為軸把△ABC旋轉(zhuǎn)一周得到的圓錐的側(cè)面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在同一直角坐標(biāo)系中,二次函數(shù)y=x2-2x-3的圖象與兩坐標(biāo)軸分別交于點(diǎn)A點(diǎn) B和點(diǎn)C,一次函數(shù)的圖象與拋物線交于B、C兩點(diǎn).
(1)將這個(gè)二次函數(shù)化為的形式為 。
(2)當(dāng)自變量滿足 時(shí),兩函數(shù)的函數(shù)值都隨增大而增大。
(3)當(dāng)自變量滿足 時(shí),一次函數(shù)值大于二次函數(shù)值。
(4)當(dāng)自變量滿足 時(shí),兩個(gè)函數(shù)的函數(shù)值的積小于0。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+4x+c(a≠0)經(jīng)過(guò)點(diǎn)A(3,﹣4)和B(0,2).
(1)求拋物線的表達(dá)式和頂點(diǎn)坐標(biāo);
(2)將拋物線在A、B之間的部分記為圖象M(含A、B兩點(diǎn)).將圖象M沿直線x=3翻折,得到圖象N.若過(guò)點(diǎn)C(9,4)的直線y=kx+b與圖象M、圖象N都相交,且只有兩個(gè)交點(diǎn),求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程mx2+(3m+1)x+3=0.
(1)求證:該方程有兩個(gè)實(shí)數(shù)根;
(2)如果拋物線y=mx2+(3m+1)x+3與x軸交于A、B兩個(gè)整數(shù)點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),且m為正整數(shù),求此拋物線的表達(dá)式;
(3)在(2)的條件下,拋物線y=mx2+(3m+1)x+3與y軸交于點(diǎn)C,點(diǎn)B關(guān)于y軸的對(duì)稱(chēng)點(diǎn)為D,設(shè)此拋物線在﹣3≤x≤﹣之間的部分為圖象G,如果圖象G向右平移n(n>0)個(gè)單位長(zhǎng)度后與直線CD有公共點(diǎn),求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線與軸交于點(diǎn)和點(diǎn)與軸交于點(diǎn),過(guò)點(diǎn)的直線交拋物線的另一個(gè)點(diǎn)為點(diǎn),點(diǎn)的橫坐標(biāo)為.
求和的值.
點(diǎn)在直線下方的拋物線上任一點(diǎn),點(diǎn)的橫坐標(biāo)為過(guò)點(diǎn)作軸,交于點(diǎn)設(shè)求出與的函數(shù)關(guān)系式,并直接寫(xiě)出的取值范圍.
在問(wèn)的條件下,過(guò)點(diǎn)作,垂足為點(diǎn),連接,若把分 成面積比為的兩個(gè)三角形,求出此時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,函數(shù)圖象上點(diǎn)的橫坐標(biāo)與其縱坐標(biāo)的和稱(chēng)為點(diǎn)的“坐標(biāo)和”,而圖象上所有點(diǎn)的“坐標(biāo)和”中的最小值稱(chēng)為圖象的“智慧數(shù)”.如圖:拋物線上有一點(diǎn),則點(diǎn)的“坐標(biāo)和”為6,當(dāng)時(shí),該拋物線的“智慧數(shù)”為0.
(1)點(diǎn)在函數(shù)的圖象上,點(diǎn)的“坐標(biāo)和”是 ;
(2)求直線的“智慧數(shù)”;
(3)若拋物線的頂點(diǎn)橫、縱坐標(biāo)的和是2,求該拋物線的“智慧數(shù)”;
(4)設(shè)拋物線頂點(diǎn)的橫坐標(biāo)為,且該拋物線的頂點(diǎn)在一次函數(shù)的圖象上;當(dāng)時(shí),拋物線的“智慧數(shù)”是2,求該拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(m,n 為常數(shù)).
(1)若拋物線的的對(duì)稱(chēng)軸為直線 x=1,且經(jīng)過(guò)點(diǎn)(0,-1),求 m,n 的值;
(2)若拋物線上始終存在不重合的兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),求 n 的取值范圍;
(3)在(1)的條件下,存在正實(shí)數(shù) a,b( a<b),當(dāng) a≤x≤b 時(shí),恰好有,請(qǐng)直接寫(xiě)出 a,b 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(0,4)、B(﹣3,0),將線段AB沿x軸正方向平移n個(gè)單位得到菱形ABCD.
(1)畫(huà)出菱形ABCD,并直接寫(xiě)出n的值及點(diǎn)D的坐標(biāo);
(2)已知反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)D,ABMN的頂點(diǎn)M在y軸上,N在y=的圖象上,求點(diǎn)M的坐標(biāo);
(3)若點(diǎn)A、C、D到某直線l的距離都相等,直接寫(xiě)出滿足條件的直線解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com