【題目】如圖,直線AB,CD相交于點O,射線OM平分∠AOC,ON⊥OM.

(1)若∠BOD=70°,求∠AOM和∠CON的度數(shù);

(2)若∠BON=50°,求∠AOM和∠CON的度數(shù).

【答案】(1)55°(2)50°

【解析】

(1)直接利用垂線的定義結(jié)合角平分線的定義得出答案.
(2)利用垂線的定義結(jié)合角平分線的定義得出答案.

(1)因為∠BOD=70°,所以∠AOC=70°.

因為射線OM平分∠AOC,所以∠AOM=∠MOC=35°.因為ON⊥OM,所以∠CON=90°-35°=55°.

(2)因為ON⊥OM,∠BON=50°,

所以∠AOM=180°-90°-50°=40°.

因為射線OM平分∠AOC,所以∠AOM=∠MOC=40°,

所以∠CON=90°-40°=50°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸相交于A(﹣1,0),B(3,0),與y軸交于點C(0,3).

(1)求拋物線的解析式;
(2)連接BC,點P為拋物線上第一象限內(nèi)一動點,當(dāng)△BCP面積最大時,求點P的坐標(biāo);
(3)設(shè)點D是拋物線的對稱軸上的一點,在拋物線上是否存在點Q,使以點B,C,D,Q為頂點的四邊形為平行四邊形?若存在,求出點Q的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中有ABC,若小方格邊長為1,請你根據(jù)所學(xué)的知識解答下列問題:

(1)判斷ABC是什么形狀?并說明理由.

(2)求ABCBC邊上的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y= (x>0)的圖像交矩形OABC的邊AB于點D,交邊BC于點E,且BE=2EC.若四邊形ODBE的面積為6,則k=.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,隨機地閉合開關(guān)S1 , S2 , S3 , S4 , S5中的三個,能夠使燈泡L1 , L2同時發(fā)光的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為正方形ABCD的邊BC上一動點(P與B、C不重合),點Q在CD邊上,且BP=CQ,連接AP、BQ交于點E,將△BQC沿BQ所在直線對折得到△BQN,延長QN交BA的延長線于點M.

(1)求證:AP⊥BQ;
(2)若AB=3,BP=2PC,求QM的長;
(3)當(dāng)BP=m,PC=n時,求AM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以Rt△ABC的直角邊AB為直徑作⊙O,交斜邊AC于點D,點E為OB的中點,連接CE并延長交⊙O于點F,點F恰好落在 的中點,連接AF并延長與CB的延長線相交于點G,連接OF.
(1)求證:OF= BG;
(2)若AB=4,求DC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:ABC是等腰直角三角形.A=90°,CE平分∠ACBAB于點E.

(1)如圖1,若點D在斜邊BC上,DM垂直平分BE,垂足為M.求證:BD=AE.

(2)如圖2,過點BBFCECE的延長線于點F.CE=6,求BEC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O為直線AB上一點,過點O作射線OC,使∠BOC=135°,將一個含45°角的直角三角尺的一個頂點放在點O處,斜邊OM與直線AB重合,另外兩條直角邊都在直線AB的下方.

1)將圖1中的三角尺繞著點O逆時針旋轉(zhuǎn)90°,如圖2所示,此時∠BOM=_____;在圖2中,OM是否平分∠CON?請說明理由;

2)緊接著將圖2中的三角板繞點O逆時針繼續(xù)旋轉(zhuǎn)到圖3的位置所示,使得ON在∠AOC的內(nèi)部,請?zhí)骄浚骸?/span>AOM與∠CON之間的數(shù)量關(guān)系,并說明理由;

3)將圖1中的三角板繞點O按每秒的速度沿逆時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,第t秒時,直線ON恰好平分銳角∠AOC,則t的值為_____(直接寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案