年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖1至圖4中,兩平行線AB、CD間的距離均為6,點(diǎn)M為AB上一定點(diǎn).
思考:如圖1,圓心為0的半圓形紙片在AB,CD之間(包括AB,CD),其直徑MN在AB上,MN=8,點(diǎn)P為半圓上一點(diǎn),設(shè)∠MOP=α。
當(dāng)α=__ __度時(shí),點(diǎn)P到CD的距離最小,最小值為__ __.
探究一:在圖1的基礎(chǔ)上,以點(diǎn)M為旋轉(zhuǎn)中心,在AB,CD 之間順時(shí)針旋轉(zhuǎn)該半圓形紙片,直到不能再轉(zhuǎn)動(dòng)為止,如圖2,得到最大旋轉(zhuǎn)角∠BMO=_ __度,此時(shí)點(diǎn)N到CD的距離是__ __.
探究二:將如圖1中的扇形紙片NOP按下面對α的要求剪掉,使扇形紙片MOP繞點(diǎn)M在AB,CD之間順時(shí)針旋轉(zhuǎn)。
(1)如圖3,當(dāng)α=60°時(shí),求在旋轉(zhuǎn)過程中,點(diǎn)P到CD的最小距離,并請指出旋轉(zhuǎn)角∠BMO的最大值;
(2)如圖4,在扇形紙片MOP旋轉(zhuǎn)過程中,要保證點(diǎn)P能落在直線CD上,請直接確定α的最大值=__ __.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知:如圖,△ABC中,點(diǎn)D、E是邊AB上的點(diǎn),CD平分∠ECB,且.
(1)求證:△CED∽△ACD;
(2)求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知關(guān)于x的一次函數(shù)y=mx+2的圖像經(jīng)過點(diǎn)(-2,6).
(1)求m的值;
(2)畫出此函數(shù)的圖像;
(3)平移此函數(shù)的圖像,使得它與兩坐標(biāo)軸所圍成的圖形的面積為4,
請直接寫出此時(shí)圖像所對應(yīng)的函數(shù)關(guān)系式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com