精英家教網 > 初中數學 > 題目詳情

【題目】EF是平行四邊ABCD的對角線BD的垂直平分線,EF與邊AD,BC分別交于點E,F

1)求證:四邊形BFDE是菱形;

2)若ED=5,BD=8,求菱形BFDE的面積.

【答案】1)見解析;(224

【解析】

1)證△EOD≌△FOB,得出EO=OF,根據四邊形BFDE對角線垂直且相互平分得出菱形;

2)先根據菱形的性質,得出EF的長,然后利用菱形面積公式求解即可.

1)∵四邊形ABCD是平行四邊形

ADBC

∴∠EDO=∠FBO,∠DEO=∠BFO

EFBD的垂直平分線

DO=BO,EF⊥BD

∴△EOD≌△FOB(AAS)

∴EO=OF

BO=ODEF⊥BD

∴四邊形BFDE是菱形

2)∵四邊形BFDE是菱形,BD=8

BO=OD=4

ED=5,EF⊥BD

∴在Rt△EOD中,EO=3

OF=3,∴EF=6

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某工廠現有甲種原料360千克,乙種原料290千克,計劃利用這兩種原料生產A、B兩種產品共50件,已知生產一件A種產品用甲種原料9千克,乙種原料3千克,可獲利700元;生產一件B種產品用甲種原料4千克,乙種原料10千克,可獲利1200元.

(1)按要求安排A、B兩種產品的生產件數,有哪幾種方案?請你設計出來;

(2)設生產A、B兩種產品總利潤為y元,其中一種產品生產件數為x件,試寫出y與x之間的函數關系式,并利用函數的性質說明那種方案獲利最大?最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=-x2-2x+3的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.

(1)求點A、B、C的坐標;

(2)點M為線段AB上一點(點M不與點A、B重合),過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N,若點P在點Q左邊,當矩形PMNQ的周長最大時,求△AEM的面積;

(3)在(2)的條件下,當矩形PMNQ的周長最大時,連接DQ,過拋物線上一點F作

y軸的平行線,與直線AC交于點G(點G在點F的上方).若,

求點F的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,點E、F分別在邊ABCD上,下列條件不能判定四邊形DEBF一定是平行四邊形的是(

A.AECFB.DEBFC.ADE=∠CBFD.AED=∠CFB

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點為上的點,上的點,,,那么,

請完成它成立的理由.

,

.(______)

(______)

∴____________,(______)

(______)

(______).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某電器商場銷售A,B兩種型號計算器,兩種計算器的進貨價格分別為每臺30元,40. 商場銷售5A型號和1B型號計算器,可獲利潤76元;銷售6A型號和3B型號計算器,可獲利120.

1)求商場銷售A,B兩種型號計算器的銷售價格分別是多少元?(利潤=銷售價格進貨價格)

2)商場準備用不多于2500元的資金購進A,B兩種型號計算器共70臺,問最少需要購進A型號的計算器多少臺?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,動點在第一象限及、軸上運動.第一次它從原點運到點,然后按圖中箭頭所示方向運動,即,每次運動一個單位長度,若第2018次運動到點,則式子的值是______.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】△ABC中,AB=AC,CG⊥BABA的延長線于點G.一等腰直角三角尺按如圖1所示的位置擺放,該三角尺的直角頂點為F,一條直角邊與AC邊在一條直線上,另一條直角邊恰好經過點B

1)在圖1中請你通過觀察、測量BFCG的長度,猜想并寫出BFCG滿足的數量關系,然后證明你的猜想;

2)當三角尺沿AC方向平移到圖2所示的位置時,一條直角邊仍與AC邊在同一直線上,另一條直角邊交BC邊于點D,過點DDE⊥BA于點E.此時請你通過觀察、測量DE、DFCG 的長度,猜想并寫出DEDFCG之間滿足的數量關系,然后證明你的猜想;

3)當三角尺在(2)的基礎上沿AC方向繼續(xù)平移到圖3所示的位置(點F在線段AC上,且點F與點C不重合)時,(2)中的猜想是否仍然成立?(不用說明理由)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形中,,,點E在邊AB上,點F是邊BC上不與點B、C重合的一個動點,把沿EF折疊,點B落在點處.若,當是以為腰的等腰三角形時,線段的長為__________

查看答案和解析>>

同步練習冊答案