【題目】請閱讀下列材料:

問題:已知方程x2+x-1=0,求一個一元二次方程,使它的根分別是已知方程根的2倍.

解:設(shè)所求方程的根為y,則y=2x,所以x=.

x=代入已知方程,得-1=0.

化簡,得y2+2y-4=0.

故所求方程為y2+2y-4=0.

這種利用方程根的代換求新方程的方法,我們稱為換根法”.

請用閱讀材料提供的換根法求新方程(要求:把所求方程化為一般形式):

(1)已知方程x2+x-2=0,求一個一元二次方程,使它的根分別是已知方程根的相反數(shù),則所求方程為_________;

(2)已知關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)有兩個不等于零的實數(shù)根,求一個一元二次方程,使它的根分別是已知方程根的倒數(shù).

【答案】(1)y2-y-2=0;(2)cy2+by+a=0(c≠0).

【解析】

(1)設(shè)所求方程的根為y,則y+x=0,所以x=-y,把所以x=-y代入原方程整理即可;

(2)設(shè)所求方程的根為y,則xy=1,所以x,把x代入原方程整理即可;

(1)設(shè)所求方程的根為y,則y+x=0,所以x=-y,把所以x=-y代入原方程,得

(-y)2+(-y)-2=0,

y2-y-2=0;

(2)設(shè)所求方程的根為y,則xy=1,所以x,把x代入原方程,得

a×()2b×c0,

cy2+by+a=0.

c=0,則原方程變?yōu)?/span>ax2bx0,此時方程有一個根為0,不符合題意,

c≠0,

所求方程為:cy2+by+a=0(c≠0).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2-(2m3xm220

1)若方程有實數(shù)根,求實數(shù)m的取值范圍;

2)若方程兩實數(shù)根分別為,且滿足,求實數(shù)m的值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是菱形ABCD對角線AC上的一點,連接DP并延長DP交邊AB于點E,連接BP并延長交邊AD于點F,交CD的延長線于點G.已知DFFA12

1)求證:△APB≌△APD

2)當線段DP的長為6時,求線段FG的長;

3)請直接寫出的比值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,BAC=90°,對角線AC,BD相交于點P,以AB為直徑的O分別交BC,BD于點E,Q,連接EP并延長交AD于點F.

(1)求證:EF是O的切線;

(2)求證:=4BPQP.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在正方形ABCD中,點E在邊CD上,AQ⊥BE于點Q,DP⊥AQ于點P.

(1)求證:AP=BQ;

(2)在不添加任何輔助線的情況下,請直接寫出圖中四對線段,使每對中較長線段與較短線段長度的差等于PQ的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市預測某飲料會暢銷、先用1800元購進一批這種飲料,面市后果然供不應求,又用8100元購進這種飲料,第二批飲料的數(shù)量是第一批的3倍,但單價比第一批貴2元.

1)第一批飲料進貨單價多少元?

2)若兩次進飲料都按同一價格銷售,兩批全部售完后,獲利不少于2700元,那么銷售單價至少為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某品牌童裝網(wǎng)店平均每天可售出20件,每件盈利40.為了迎接“雙十一”,商場決定采取適當?shù)慕祪r措施.經(jīng)調(diào)查,如果每件童裝降價1元,那么平均每天就可多售出2.解決下列問題

1)若設(shè)每件童裝降價元,那么平均每天可以多售出 件童裝.

2)為了使百姓得到更多實惠,要想平均每天銷售這種童裝盈利1200元,則每件童裝應降價多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了提高學生的閱讀能力,我市某校開展了“讀好書,助成長”的活動,并計劃購置一批圖書,購書前,對學生喜歡閱讀的圖書類型進行了抽樣調(diào)查,并將調(diào)查數(shù)據(jù)繪制成兩幅不完整的統(tǒng)計圖,如圖所示,請根據(jù)統(tǒng)計圖回答下列問題:

1)本次調(diào)查共抽取了 名學生,兩幅統(tǒng)計圖中的m ,n

2)已知該校共有3600名學生,請你估計該校喜歡閱讀“A”類圖書的學生約有多少人?

3)學校將舉辦讀書知識競賽,九年級1班要在本班3名優(yōu)勝者(21女)中隨機選送2人參賽,請用列表或畫樹狀圖的方法求被選送的兩名參賽者為一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,一次函數(shù)的圖象經(jīng)過點A(23)與點B(0,5)

1)求此一次函數(shù)的解析式。

2)若P點為此一次函數(shù)圖象上一點,且△POB的面積為10.求點P坐標。

查看答案和解析>>

同步練習冊答案