精英家教網 > 初中數學 > 題目詳情

【題目】某生產商存有1200千克產品,生產成本為150/千克,售價為400元千克.因市場變化,準備低價一次性處理掉部分存貨,所得貨款全部用來生產產品,產品售價為200/千克.經市場調研發(fā)現(xiàn),產品存貨的處理價格(元/千克)與處理數量(千克)滿足一次函數關系(),且得到表中數據.

(千克)

(元/千克)

200

350

400

300

1)請求出處理價格(元千克)與處理數量(千克)之間的函數關系;

2)若產品生產成本為100元千克,產品處理數量為多少千克時,生產產品數量最多,最多是多少?

3)由于改進技術,產品的生產成本降低到了/千克,設全部產品全部售出,所得總利潤為(元),若時,滿足的增大而減小,求的取值范圍

【答案】1;(2)當時,生產B產品數量最多,最多為1600千克;(3.

【解析】

(1)設出函數表達式,再將數據代入求解即可.

(2)先求出生產數量的表達式,再根據二次函數頂點式求出最值即可.

(3)先求出總利潤的表達式,再根據二次函數的對稱軸公式求出對稱軸,根據增減性即可求出.

解:(1)設,

根據題意,得:

解得:,

2)生產產品的數量,

∴當時,生產B產品數量最多,最多為1600千克;

3

,

∴對稱軸,

,若時,的增大而減小,

,即

的取值范圍是

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】為獎勵優(yōu)秀學生,某校準備購買一批文具袋和圓規(guī)作為獎品,已知購買1個文具袋和2個圓規(guī)需21元,購買2個文具袋和3個圓規(guī)需39元.

1)求文具袋和圓規(guī)的單價.

2)學校準備購買文具袋20個,圓規(guī)100個,文具店給出兩種優(yōu)惠方案:

方案一:每購買一個文具袋贈送1個圓規(guī).

方案二:購買10個以上圓規(guī)時,超出10個的部分按原價的八折優(yōu)惠,文具袋不打折.學校選擇哪種方案更劃算?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,一次函數的圖象與反比例函數的圖象交于

1)求反比例函數和一次函數的解析式;

2)在x軸上存在一點C,使為等腰三角形,求此時點C的坐標;

3)根據圖象直接寫出使一次函數的值大于反比例函數的值的x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商業(yè)集團新建一小車停車場,經測算,此停車場每天需固定支出的費用(設施維修費、車輛管理人員工資等)為800元.為制定合理的收費標準,該集團對一段時間每天小車停放輛次與每輛次小車的收費情況進行了調查,發(fā)現(xiàn)每輛次小車的停車費不超過5元時,每天來此處停放的小車可達1440輛次;若停車費超過5元,則每超過1元,每天來此處停放的小車就減少120輛次.為便于結算,規(guī)定每輛次小車的停車費x(元)只取整數,用y(元)表示此停車場的日凈收入,且要求日凈收入不低于2512元.(日凈收入=每天共收取的停車費﹣每天的固定支出)

1)當x5時,寫出yx之間的關系式,并說明每輛小車的停車費最少不低于多少元;

2)當x5時,寫出yx之間的函數關系式(不必寫出x的取值范圍);

3)該集團要求此停車場既要吸引客戶,使每天小車停放的輛次較多,又要有較大的日凈收入.按此要求,每輛次小車的停車費應定為多少元?此時日凈收入是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校準備組織師生共60人,從甲地乘動車前往乙地參加夏令營活動,動車票價格如表所示:(教師按成人票價購買,學生按學生票價購買).

運行區(qū)間

成人票價(元/張)

學生票價(元/張)

出發(fā)站

終點站

一等座

二等座

二等座

甲地

乙地

26

22

16

若師生均購買二等座票,則共需1020元.

1)求參加活動的教師和學生各有多少人?

2)由于部分教師需提早前往做準備工作,這部分教師均購買一等座票,后續(xù)前往的教師和學生均購買二等座票.設提早前往的教師有人,購買一、二等座票全部費用為元.

①求關于的函數關系式;

②若購買一、二等座票全部費用不多于1030元,則提早前往的教師最多只能有多少人?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某超市銷售一種成本為每臺20元的臺燈,規(guī)定銷售單價不低于成本價,又不高于每臺32元.銷售中平均每月銷售量y(臺)與銷售單價x(元)的關系可以近似地看做一次函數,如下表所示:

x

22

24

26

28

y

90

80

70

60

(1)請直接寫出y與x之間的函數關系式;

(2)為了實現(xiàn)平均每月375元的臺燈銷售利潤,這種臺燈的售價應定為多少?這時每月應購進臺燈多少個?

(3)設超市每月臺燈銷售利潤為ω(元),求ω與x之間的函數關系式,當x取何值時,ω的值最大?最大值是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某市總預算億元用三年時間建成一條軌道交通線.軌道交通線由線路搬遷安置、輔助配套三項程組成.2015年開始,市政府在每年年初分別對三項工程進行不同數額的投資.

2015年年初,對線路設、搬遷安置的投資分別是輔助配套投資的2倍、4.隨后兩年,線路設投資每年都增加億元,預計線路敷設三年總投資為54億元時會順利如期完工;搬遷安投資從2016年初開始遂年按同一百分數遞減,依此規(guī)律, 2017年年初只需投資5億元,即可順利如期完工;輔助配套工程在2016年年初的投資在前一年基礎上的增長率線路2016年投資增長率的1.5倍,2017年年初的投資比該項工程前兩年投資的總和還多4億元,若這樣,輔助配套工程也可以如期完工.測算,這三年的線路設、輔助配套工程的總投資資金之比達到3: 2.

(1)三年用于輔助配套的投資將達到多少億元?

(2)市政府2015年年初對三項工程的總投資是多少億元?

(3)求搬遷安置投資逐年遞減的百分數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某體育器材專賣柜經銷A、B兩種器材,A種器材每件進價350元,售價480元;B種器材每件進價200元,售價300元.

1)該專賣柜計劃用8000元去購進AB兩種器材若干件.

①若購進A種器材x件,B種器材y件,所獲利潤w元,請寫出wx之間滿足的函數關系式;

②怎樣購進才能使專賣柜經銷這兩種器材所獲利潤最大(其中A種器材不少于7件)?

2)在“五·一”期間,該專賣柜對A、B兩種器材進行如下優(yōu)惠促銷活動:

一次性購物總金額

優(yōu)惠措施

不超過3000

不優(yōu)惠

超過3000元不超過4000

售價打八折

超過4000

售價打七折

促銷活動期間:甲學校去該專賣柜購買A種器材付款2688元;乙學校去該專賣柜購買B種器材付款2100元,求丙學校決定一次性購買甲學校和乙學校購買的同樣多的器材需付款多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一把直尺,的直角三角板和光盤如圖擺放,角與直尺交點,,則光盤的直徑是( )

A. 3 B. C. D.

查看答案和解析>>

同步練習冊答案