【題目】如圖,已知AB是⊙O的直徑,CD與⊙O相切于C,BE∥CO.
(1)求證:BC是∠ABE的平分線;
(2)若DC=8,⊙O的半徑OA=6,求CE的長.

【答案】
(1)證明:∵DE是切線,

∴OC⊥DE,

∵BE∥CO,

∴∠OCB=∠CBE,

∵OC=OB,

∴∠OCB=∠OBC,

∴∠CBE=∠CBO,

∴BC平分∠ABE.


(2)在Rt△CDO中,∵DC=8,OC=0A=6,

∴OD= =10,

∵OC∥BE,

=

=

∴EC=4.8.


【解析】(1)由BE∥CO,推出∠OCB=∠CBE,由OC=OB,推出∠OCB=∠OBC,可得∠CBE=∠CBO;(2)在Rt△CDO中,求出OD,由OC∥BE,可得 = ,由此即可解決問題;
【考點精析】解答此題的關鍵在于理解切線的性質(zhì)定理的相關知識,掌握切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是( ) ①試驗條件不會影響某事件出現(xiàn)的頻率;
②在相同的條件下試驗次數(shù)越多,就越有可能得到較精確的估計值,但各人所得的值不一定相同;
③如果一枚骰子的質(zhì)量分布均勻,那么拋擲后每個點數(shù)出現(xiàn)的機會均等;
④拋擲兩枚質(zhì)量分布均勻的相同的硬幣,出現(xiàn)“兩個正面”、“兩個反面”、“一正一反”的機會相同.
A.①②
B.②③
C.③④
D.①③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探索與發(fā)現(xiàn):

(1)若直線a1a2,a2a3,則直線a1a3的位置關系是__________,請說明理由.

(2)若直線a1a2a2a3,a3a4,則直線a1a4的位置關系是________(直接填結(jié)論,不需要證明)

(3)現(xiàn)在有2 011條直線a1a2,a3,,a2 011,且有a1a2,a2a3,a3a4,a4a5,請你探索直線a1a2 011的位置關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABCD,F(xiàn)CD上一點,∠EFD=60°,AEC=2CEF,若6°<BAE<15°,C的度數(shù)為整數(shù),則∠C的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的外接圓為⊙O,點P在劣弧上(不與C點重合).
(1)求∠BPC的度數(shù);
(2)若⊙O的半徑為8,求正方形ABCD的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先填寫表,通過觀察后再回答問題:

a

0.0001

0.01

1

100

10000

0.01

x

1

y

100

(1)表格中x=   ,y=   ;

(2)從表格中探究a數(shù)位的規(guī)律,并利用這個規(guī)律解決下面兩個問題:

①已知≈3.16,則   ;

②已知=8.973,若=897.3,用含m的代數(shù)式表示b,則b=   ;

(3)試比較a的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某糕點廠中秋節(jié)前要制作一批盒裝月餅,每盒裝1個大月餅和7個小月餅,制作1個大月餅要用0.06kg面粉,1個小月餅要用0.015kg面粉,現(xiàn)共有面粉330kg,制作兩種月餅各用多少kg面粉時,才能使生產(chǎn)的大小月餅剛好配套成盒?最多能生產(chǎn)多少盒月餅?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點C在⊙O上,點P是直徑AB上的一點(不與A重合),過點P作AB的垂線交BC于點Q.
(1)在線段PQ上取一點D,使DQ=DC,連接DC,試判斷CD與⊙O的位置關系,并說明理由.
(2)若cosB= ,BP=6,AP=1,求QC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為推廣陽光體育大課間活動,我市某中學決定在學生中開設A:實心球.B:立定跳遠,C:跳繩,D:跑步四種活動項目.為了了解學生對四種項目的喜歡情況,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計圖.請結(jié)合圖中的信息解答下列問題:

1)在這項調(diào)查中,共調(diào)查了多少名學生?

2)請計算本項調(diào)查中喜歡立定跳遠的學生人數(shù)和所占百分比,并將兩個統(tǒng)計圖補充完整.

查看答案和解析>>

同步練習冊答案