【題目】(2017浙江省湖州市,第23題,10分)湖州素有魚米之鄉(xiāng)之稱,某水產(chǎn)養(yǎng)殖大戶為了更好地發(fā)揮技術優(yōu)勢,一次性收購了20000kg淡水魚,計劃養(yǎng)殖一段時間后再出售.已知每天放養(yǎng)的費用相同,放養(yǎng)10天的總成本為30.4萬元;放養(yǎng)20天的總成本為30.8萬元(總成本=放養(yǎng)總費用+收購成本).

(1)設每天的放養(yǎng)費用是a萬元,收購成本為b萬元,求ab的值;

(2)設這批淡水魚放養(yǎng)t天后的質(zhì)量為mkg),銷售單價為y/kg.根據(jù)以往經(jīng)驗可知:mt的函數(shù)關系為;yt的函數(shù)關系如圖所示.

①分別求出當0≤t≤5050<t≤100時,yt的函數(shù)關系式;

②設將這批淡水魚放養(yǎng)t天后一次性出售所得利潤為W元,求當t為何值時,W最大?并求出最大值.(利潤=銷售總額﹣總成本)

【答案】1a的值為0.04,b的值為30;(2)①;②放養(yǎng)55天時,W最大,最大值為180250元.

【解析】試題分析:(1)由放養(yǎng)10天的總成本為30.4萬元;放養(yǎng)20天的總成本為30.8萬元可得答案;

(2)①0≤t≤50、50<t≤100兩種情況,結合函數(shù)圖象利用待定系數(shù)法求解可得;

就以上兩種情況,根據(jù)利潤=銷售總額﹣總成本列出函數(shù)解析式,依據(jù)一次函數(shù)性質(zhì)和二次函數(shù)性質(zhì)求得最大值即可得.

試題解析:(1)由題意,得:,解得,答:a的值為0.04,b的值為30;

(2)①0≤t≤50時,設yt的函數(shù)解析式為y=kt+n,將(0,15)、(50,25)代入,得:,解得:,∴yt的函數(shù)解析式為

50<t≤100時,設yt的函數(shù)解析式為y=at+b,將點(50,25)、(100,20)代入,得:,解得:,∴yt的函數(shù)解析式為y=﹣t+30;

綜上所述: ;

由題意,當0≤t≤50時,W=20000(t+15)﹣(400t+300000)=3600t,∵3600>0,∴t=50時,W最大值=180000(元);

50<t≤100時,W=(100t+15000)(﹣t+30)﹣(400t+300000)

=﹣10t2+1100t+150000

=﹣10(t﹣55)2+180250,∵﹣10<0,∴t=55時,W最大值=180250(元)

綜上所述,放養(yǎng)55天時,W最大,最大值為180250元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知RtABC 中,∠ACB=90°,BC=2,AC=3,以點C為圓心、CB為半徑的圓交AB于點D,過點AAECD,交BC延長線于點E.

(1)求CE的長;

(2)P CE延長線上一點,直線AP、CD交于點Q.

①如果ACQ ∽△CPQ,求CP的長;

②如果以點A為圓心,AQ為半徑的圓與⊙C相切,求CP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖①、圖②、圖③均是4×4的正方形網(wǎng)格,每個小正方形的頂點稱為格點,每個小正方形的邊長均為1.

(1)在圖①、圖②中,以格點為頂點,線段AB為一邊,分別畫一個平行四邊形和菱形,并直接寫出它們的面積.(要求兩個四邊形不全等)

(2)在圖③中,以點A為頂點,另外三個頂點也在格點上,畫一個面積最大的正方形,并直接寫出它的面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某餐廳中,一張桌子可坐6人,有如圖所示的兩種擺放方式:

(1)當有n張桌子時,兩種擺放方式各能坐多少人?

(2)一天中午餐廳要接待98位顧客共同就餐,但餐廳只有25張這樣的餐桌.若你是這個餐廳的經(jīng)理,你打算選擇哪種方式來擺放餐桌?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點A、B、P分別在兩坐標軸上,∠APB=60°,PB=m,PA=2m,以點P為圓心、PB為半徑作⊙P,作∠OBP的平分線分別交⊙P、OPC、D,連接AC.

(1)求證:直線AB⊙P的切線.

(2)設△ACD的面積為S,求S關于m的函數(shù)關系式.

(3)如圖2,當m=2時,把點C向右平移一個單位得到點T,過O、T兩點作⊙Qx軸、y軸于E、F兩點,若M、N分別為兩弧的中點,作MG⊥EF,NH⊥EF,垂足為G、H,試求MG+NH的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學庫存若干套桌椅,準備修理后支援貧困山區(qū)學!,F(xiàn)有甲、乙兩木工組,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲單獨修完這些桌椅比乙單獨修完多用20天,學校每天付甲組80元修理費,付乙組120元修理費。

(1)該中學庫存多少套桌椅?

(2)在修理過程中,學校要派一名工人進行質(zhì)量監(jiān)督,學校負擔他每天10元生活補助費,現(xiàn)有三種修理方案:a、由甲單獨修理;b、由乙單獨修理;c、甲、乙合作同時修理。你認為哪種方案省時又省錢?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象頂點在軸上,且,與一次函數(shù)的圖象交于軸上一點和另一交點.

求拋物線的解析式;

為線段上一點,過點軸,垂足為,交拋物線于點,請求出線段的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD//BC,∠A=∠CCD=2AD,BEAD于點E,FCD的中點,連接EF、BF

(1)求證:四邊形ABCD是平行四邊形;

(2)求證:BF平分∠ABC;

(3)請判斷△BEF的形狀,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校舉行演講比賽,選出了10名同學擔任評委,并事先擬定從如下4個方案中選擇合理的方案來確定每個演講者的最后得分(滿分為10分):

方案①:所有評委所給分的平均數(shù);

方案②:在所有評委所給分中,去掉一個最高分和一個最低分,然后再計算其余給分的平均數(shù);

方案③:所有評委所給分的中位數(shù);

方案④:所有評委所給分的眾數(shù)。

為了探究上述方案的合理性,先地某個同學的演講成績進行了統(tǒng)計實驗,如圖是這個同學的得分統(tǒng)計圖。

1)分別按上述4個方案計算這個同學演講的最后得分;

2)根據(jù)(1)中的結果,請用統(tǒng)計的知識說明哪些方案不適合作為這個同學演講的最后得分,并說明你的理由。

查看答案和解析>>

同步練習冊答案