【題目】如圖,⊙O中,直徑CD⊥弦AB于E,AM⊥BC于M,交CD于N,連AD.
(1)求證:AD=AN;
(2)若AE=,ON=1,求⊙O的半徑.
【答案】(1)證明見解析;(2)3;
【解析】
(1)先根據圓周角定理得出∠BAD=∠BCD,再由直角三角形的性質得出∠ANE=∠CNM,故可得出∠BCD=∠BAM,由全等三角形的判定定理得出△ANE≌△ADE,故可得出結論;
(2)先根據AE的長,設NE=x,則OE=x-1,NE=ED=x,r=OD=OE+ED=2x-1,連結AO,則AO=OD=2x-1,在Rt△AOE中根據勾股定理可得出x的值,進而得出結論;
(1)證明:∵∠BAD與∠BCD是同弧所對的圓周角,
∴∠BAD=∠BCD,
∵AE⊥CD,AM⊥BC,
∴∠AMC=∠AEN=90°,
∵∠ANE=∠CNM,
∴∠BCD=∠BAM,
∴∠BAM=BAD,
在△ANE與△ADE中,
,
∴△ANE≌△ADE,
∴AD=AN;
(2)∵AE=2,AE⊥CD,
又∵ON=1,
∴設NE=x,則OE=x-1,NE=ED=x,
r=OD=OE+ED=2x-1
連結AO,則AO=OD=2x-1,
∵△AOE是直角三角形,AE=2,OE=x-1,AO=2x-1,
∴(2)2+(x-1)2=(2x-1)2,
解得x=2,
∴r=2x-1=3.
科目:初中數學 來源: 題型:
【題目】已知△ABC的三邊分別為a、b、c,則下列條件中不能判定△ABC是直角三角形的是( 。
A. b2=a2﹣c2B. a:b:c=1::2
C. ∠C=∠A﹣∠BD. ∠A:∠B:∠C=3:4:5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=﹣2x2﹣4x+6.
(1)求出函數的頂點坐標、對稱軸以及描述該函數的增減性.
(2)求拋物線與x軸交點和y軸交點坐標;并畫出它的大致圖象.
(3)當﹣2<x<4時.求函數y的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線經過點A(,0),B(,0),且與y軸相交于點C.
(1)求這條拋物線的表達式;
(2)求∠ACB的度數;
(3)設點D是所求拋物線第一象限上一點,且在對稱軸的右側,點E在線段AC上,且DE⊥AC,當△DCE與△AOC相似時,求點D的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,△ABC在正方形網格中,若點A的坐標為(0,3),按要求回答下列問題:
(1)在圖中建立正確的平面直角坐標系;
(2)直接寫出△ABC的面積;
(3)畫出一個△ACD,使得AD=,CD=,并寫出點D的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=x+4與x軸、y軸分別交于點A和點B,點D為線段OB的中點,點C、P分別為線段AB、OA上的動點,當PC+PD值最小時點P的坐標為_______
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖在直角坐標平面內,拋物線y=ax2+bx﹣3與y軸交于點A,與x軸分別交于點B(﹣1,0)、點C(3,0),點D是拋物線的頂點.
(1)求拋物線的表達式及頂點D的坐標;
(2)聯結AD、DC,求△ACD的面積;
(3)點P在直線DC上,聯結OP,若以O、P、C為頂點的三角形與△ABC相似,求點P的坐
標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在探究“尺規(guī)三等分角”這個數學名題中,利用了如圖,該圖中,四邊形ABCD是矩形,線段AC繞點A逆時針旋轉得到線段AF,CF、BA的延長線交于點E,若∠E=∠FAE,∠ACB=21°,則∠ECD的度數是( 。
A. 7° B. 21° C. 23° D. 34°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明從家騎自行車出發(fā),沿一條直路到相距2400m的郵局辦事,小明出發(fā)的同時,他的爸爸以96m/min速度從郵局同一條道路步行回家,小明在郵局停留2min后沿原路以原速返回,設他們出發(fā)后經過t min時,小明與家之間的距離為s1m,小明爸爸與家之間的距離為s2 m,圖中折線OABD、線段EF分別表示s1、s2與t之間的函數關系的圖象。
(1)求s2與t之間的函數關系式;
(2)小明從家出發(fā),經過多長時間在返回途中追上爸爸?這時他們距離家還有多遠?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com