【題目】下列哪組條件能夠判別四邊形ABCD是平行四邊形?( 。
A. AB∥CD,AD=BC B. AB=CD,AD=BC
C. ∠A=∠B,∠C=∠D D. AB=AD,CB=CD
【答案】B
【解析】平行四邊形的五種判定方法分別是:(1)兩組對(duì)邊分別平行的四邊形是平行四邊形;(2)兩組對(duì)邊分別相等的四邊形是平行四邊形;(3)一組對(duì)邊平行且相等的四邊形是平行四邊形;(4)兩組對(duì)角分別相等的四邊形是平行四邊形;(5)對(duì)角線互相平分的四邊形是平行四邊形.根據(jù)平行四邊形的判定方法可知,只有選項(xiàng)B滿足“兩組對(duì)邊分別相等的四邊形是平行四邊形”這一判定定理,故B選項(xiàng)正確,而其它三個(gè)選項(xiàng)均不滿足平行四邊形的判定定理,故選項(xiàng)A、C、D錯(cuò)誤.
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角△ABC的斜邊上取異于B,C的兩點(diǎn)E,F,使∠EAF=45°,求證:以EF,BE,CF為邊的三角形是直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用小立方體搭成一個(gè)幾何體,從正面和上面看到該幾何體的形狀圖如圖所示,搭建這樣的幾何體最多要幾個(gè)小立方體?最少要幾個(gè)小立方體?并畫出最多和最少時(shí)從左面看到的形狀圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校20周年校慶時(shí),需要在草場上利用氣球懸掛宣傳條幅,EF為旗桿,氣球從A處起飛,幾分鐘后便飛達(dá)C處,此時(shí),在AF延長線上的點(diǎn)B處測得氣球和旗桿EF的頂點(diǎn)E在同一直線上.
(1)已知旗桿高為12米,若在點(diǎn)B處測得旗桿頂點(diǎn)E的仰角為30°,A處測得點(diǎn)E的仰角為45°,試求AB的長(結(jié)果保留根號(hào));
(2)在(1)的條件下,若∠BCA=45°,繩子在空中視為一條線段,試求繩子AC的長(結(jié)果保留根號(hào))?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠BAC=90°,AB=AC=2,BC=.點(diǎn)D從B點(diǎn)開始運(yùn)動(dòng)到C點(diǎn)結(jié)束(點(diǎn)D和B、C均不重合),DE交AC于E,∠ADE=45°,當(dāng)△ADE是等腰三角形時(shí),AE的長度為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對(duì)角線相交于點(diǎn)O,過點(diǎn)D作DE∥AC,且DE= AC,連接CE,OE,連接AE,交OD于點(diǎn)F.若AB=2,∠ABC=60°,則AE的長為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD的形外分別作等腰直角△ABF和等腰直角△ADE,∠FAB=∠EAD=90°,
連結(jié)AC、EF.在圖中找一個(gè)與△FAE全等的三角形,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)準(zhǔn)備新建50個(gè)停車位,用以解決小區(qū)停車難的問題.已知新建1個(gè)地上停車位和1個(gè)地下停車位共需0.6萬元;新建3個(gè)地上停車位和2個(gè)地下停車位共需1.3萬元.
(1)該小區(qū)新建1個(gè)地上停車位和1個(gè)地下停車位各需多少萬元?
(2)該小區(qū)的物業(yè)部門預(yù)計(jì)投資金額超過12萬元而不超過13萬元,那么共有幾種建造停車位的方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=90°,P是BC中點(diǎn),∠EPF=90°,給出四個(gè)結(jié)論:①∠B=∠BAP;②AE=CF;③PE=PF;④S四邊形AEPF=S△ABC.其中成立的有_______
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com