【題目】在△ABC中,∠A70°,若三角形內(nèi)有一點(diǎn)P到三邊的距離相等,則∠BPC_____;若三角形內(nèi)有一點(diǎn)M到三個(gè)頂點(diǎn)的距離相等,則∠BMC_____

【答案】125°; 140°

【解析】

根據(jù)三角形內(nèi)到三邊的距離相等的點(diǎn)是三內(nèi)角平分線的交點(diǎn)、到三個(gè)頂點(diǎn)的距離相等的點(diǎn)是三邊垂直平分線的交點(diǎn)及三角形內(nèi)角和定理計(jì)算即可.

∵∠A70°,

∴∠ABC+∠ACB110°,

∵點(diǎn)P到三邊的距離相等,

∴點(diǎn)P是三角形的內(nèi)心,

∴∠PBCABC,∠PCBACB

∴∠PBC+∠PCB55°,

∴∠BPC125°,

∵點(diǎn)M到三個(gè)頂點(diǎn)的距離相等,

∴點(diǎn)M是三角形的外心,

∴∠BMC2A140°,

故答案為:125°;140°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果一元一次方程的根是一元一次不等式組的解,則稱該一元一次方程為該不等式組的關(guān)聯(lián)方程.

1)在方程①3x-1=0;②x+1=0;③x-3x+1=-5中,不等式組關(guān)聯(lián)方程是______(填序號(hào)).

2)若不等式組的一個(gè)關(guān)聯(lián)方程的根是整數(shù),則這個(gè)關(guān)聯(lián)方程可以是______(寫(xiě)出一個(gè)即可).

3)若方程9-x=2x,3+x=2x+)都是關(guān)于x的不等式組的關(guān)聯(lián)方程,試求出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】東方專賣(mài)店專銷(xiāo)某種品牌的鋼筆,進(jìn)價(jià)12/支,售價(jià)20/支.為了促銷(xiāo),專賣(mài)店決定凡是買(mǎi)10支以上的,每多買(mǎi)一支,售價(jià)就降低0.10元(例如,某人買(mǎi)20支鋼筆,于是每只降價(jià)0.10×20﹣10=1元,就可以按19/支的價(jià)格購(gòu)買(mǎi)),但是最低價(jià)為16/支.

1求顧客一次至少買(mǎi)多少支,才能以最低價(jià)購(gòu)買(mǎi)?

2)寫(xiě)出當(dāng)一次購(gòu)買(mǎi)x支時(shí)(x10),利潤(rùn)y(元)與購(gòu)買(mǎi)量x(支)之間的函數(shù)關(guān)系式;

3)有一天,一位顧客買(mǎi)了46支,另一位顧客買(mǎi)了50支,專實(shí)店發(fā)現(xiàn)賣(mài)了50支反而比賣(mài)46支賺的錢(qián)少,為了使每次賣(mài)的多賺錢(qián)也多,在其他促銷(xiāo)條件不變的情況下,最低價(jià)16/支至少要提高到多少,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果正方形的邊長(zhǎng)為4,邊上一點(diǎn),,為線段上一點(diǎn),射線交正方形的一邊于點(diǎn),且,那么的長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,等腰梯形ABCD,AB=CD,BE=CE,求證:AE=DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中是真命題的是( )

A.中位數(shù)就是一組數(shù)據(jù)中最中間的一個(gè)數(shù)

B.這組數(shù)據(jù)0,23,3,4,6的方差是2.1

C.一組數(shù)據(jù)的標(biāo)準(zhǔn)差越大,這組數(shù)據(jù)就越穩(wěn)定

D.如果的平均數(shù)是,那么

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了預(yù)防甲型H1N1,某校對(duì)教室采用藥薰消毒法進(jìn)行消毒,已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量ymg)與時(shí)間x(min)成正比例,藥物燃燒后,yx成反比例,如圖所示,現(xiàn)測(cè)得藥物8min燃畢,此時(shí)室內(nèi)空氣每立方米的含藥量為6mg,請(qǐng)你根據(jù)題中提供的信息,解答下列問(wèn)題:

(1)藥物燃燒時(shí),求y關(guān)于x的函數(shù)關(guān)系式?自變量x的取值范圍是什么?藥物燃燒后yx的函數(shù)關(guān)系式呢?

(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6mg時(shí),生方可進(jìn)教室,那么從消毒開(kāi)始,至少需要幾分鐘后,生才能進(jìn)入教室?

(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3mg且持續(xù)時(shí)間不低于10min時(shí),才能殺滅空氣中的毒,那么這次消毒是否有效?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一節(jié)數(shù)學(xué)實(shí)踐活動(dòng)課上,老師拿出三個(gè)邊長(zhǎng)都為5cm 的正方形硬紙板,他向同學(xué)們提出了這樣一個(gè)問(wèn)題:若將三個(gè)正方形紙板不重疊地放在桌面上,用一個(gè)圓形硬紙板將其蓋住,這樣的圓形硬紙板的最小直徑應(yīng)有多大?問(wèn)題提出后,同學(xué)們經(jīng)過(guò)討論,大家覺(jué)得本題實(shí)際上就是求將三個(gè)正方形硬紙板無(wú)重疊地適當(dāng)放置,圓形硬紙板能蓋住時(shí)的最小直徑.老師將同學(xué)們討論過(guò)程中探索出的三種不同擺放類(lèi)型的圖形畫(huà)在黑板上,如圖所示:

(1)通過(guò)計(jì)算(結(jié)果保留根號(hào)與π).

(Ⅰ)圖①能蓋住三個(gè)正方形所需的圓形硬紙板最小直徑應(yīng)為

(Ⅱ)圖②能蓋住三個(gè)正方形所需的圓形硬紙板最小直徑為

(Ⅲ)圖③能蓋住三個(gè)正方形所需的圓形硬紙板最小直徑為

(2)其實(shí)上面三種放置方法所需的圓形硬紙板的直徑都不是最小的,請(qǐng)你畫(huà)出用圓形硬紙板蓋住三個(gè)正方形時(shí)直徑最小的放置方法,(只要畫(huà)出示意圖,不要求說(shuō)明理由),并求出此時(shí)圓形硬紙板的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以正方形ABCD的邊AB為一邊向外作等邊ABE,則BED的度數(shù)為______

查看答案和解析>>

同步練習(xí)冊(cè)答案