【題目】如果一元一次方程的根是一元一次不等式組的解,則稱該一元一次方程為該不等式組的關(guān)聯(lián)方程.

1)在方程①3x-1=0;②x+1=0;③x-3x+1=-5中,不等式組關(guān)聯(lián)方程是______(填序號).

2)若不等式組的一個關(guān)聯(lián)方程的根是整數(shù),則這個關(guān)聯(lián)方程可以是______(寫出一個即可).

3)若方程9-x=2x,3+x=2x+)都是關(guān)于x的不等式組的關(guān)聯(lián)方程,試求出m的取值范圍.

【答案】1)③ ;(2 2x-2=0;(31≤m2

【解析】

1)先求出方程的解和不等式組的解集,再判斷即可;

2)解不等式組求得其整數(shù)解,根據(jù)關(guān)聯(lián)方程的定義寫出一個解為1的方程即可;

3)先求出方程的解和不等式組的解集,即可得出答案.

解:(1)①解方程3x-1=0得:x=,

②解方程 x+1=0得:x=-,

③解方程x-3x+1=-5得:x=2,

解不等式組 得:x

所以不等式組的關(guān)聯(lián)方程是③,

故答案為:③;

2)解不等式x- 1得:x1.5,

解不等式1+x-3x+2得:x0.25,

則不等式組的解集為0.25x1.5,

∴其整數(shù)解為1,

則該不等式組的關(guān)聯(lián)方程為2x-2=0

故答案為:2x-2=0

3)解方程9-x=2xx=3,

解方程3+x=2x+)得x=2

解不等式組 mx≤m+2,

∵方程9-x=2x,3+x=2x+)都是關(guān)于x的不等式組的關(guān)聯(lián)方程,

1≤m2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2+x的圖象,如圖所示.

1)在同一直角坐標系中用描點法畫出一次函數(shù)y=x+的圖象,觀察圖象寫出自變量x取值在什么范圍時,一次函數(shù)的值小于二次函數(shù)的值;

2)如圖,點P是坐標平面上的一點,并在網(wǎng)格的格點上,請選擇一種適當?shù)钠揭品椒,使平移后二次函?shù)圖象的頂點落在P點上,寫出平移后二次函數(shù)圖象的函數(shù)表達式,并判斷點P是否在函數(shù)y=x+的圖象上,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADABC的角平分線,點EAB邊上一點,AE=AC,EFBC,交AC于點F.下列結(jié)論正確的是( 。

①∠ADE=ADC;②CDE是等腰三角形;③CE平分∠DEF;④AD垂直平分CE;⑤AD=CE

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是一個長為2m,寬為2n的長方形,沿圖中虛線用剪刀均分成四個小長方形,然后按圖的方式拼成一個正方形.

(1)按要求填空:

你認為圖中的陰影部分的正方形的邊長等于   ;

請用兩種不同的方法表示圖中陰影部分的面積:

方法1:   

方法2:   

觀察圖,請寫出代數(shù)式(m+n)2,(m﹣n)2,mn這三個代數(shù)式之間的等量關(guān)系:   

(2)根據(jù)(1)題中的等量關(guān)系,解決如下問題:若|m+n﹣6|+|mn﹣4|=0,求(m﹣n)2的值.

(3)實際上有許多代數(shù)恒等式可以用圖形的面積來表示,如圖,它表示了   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用無刻度直尺作圖并解答問題:

如圖,都是等邊三角形,在內(nèi)部做一點,使得,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點AD、C、F在同一直線上,AB=DE,AD=CF,添加下列條件后,仍不能判斷ABC≌△DEF的是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,等腰直角三角形的頂點軸上,,且軸于,

1)求點的坐標;

2)連接,求的面積;

3)在軸上有一動點,當的值最小時,求此時的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°AC=6cm,BC=8cm,動點P從點B出發(fā),在BA邊上以每秒5cm的速度向點A勻速運動,同時動點Q從點C出發(fā),在CB邊上以每秒4cm的速度向點B勻速運動,運動時間為t秒(0t2),連接PQ

1)若△BPQ△ABC相似,求t的值;

2)連接AQ、CP,若AQ⊥CP,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠A70°,若三角形內(nèi)有一點P到三邊的距離相等,則∠BPC_____;若三角形內(nèi)有一點M到三個頂點的距離相等,則∠BMC_____

查看答案和解析>>

同步練習(xí)冊答案