【題目】如圖,正△ABC內(nèi)接于⊙O,P是劣弧BC上任意一點(diǎn),PA與BC交于點(diǎn)E,有如下結(jié)論:①PA=PB+PC;② ;③PAPE=PBPC.其中,正確結(jié)論的個(gè)數(shù)為(
A.3個(gè)
B.2個(gè)
C.1個(gè)
D.0個(gè)

【答案】B
【解析】解:延長BP到D,使PD=PC,連接CD,可得∠CPD=∠BAC=60°, 則△PCD為等邊三角形,

∵△ABC為正三角形,
∴BC=AC
∵∠PBC=∠CAP,∠CPA=∠CDB,
∴△APC≌△BDC(AAS).
∴PA=DB=PB+PD=PB+PC,故①正確;
由(1)知△PBE∽△PAC,則
∴②錯(cuò)誤;
∵∠CAP=∠EBP,∠BPE=∠CPA
∴△PBE∽△PAC

∴PAPE=PBPC,故③正確;
故選B.
根據(jù)題意:易得△APC≌△BDC.即AP=BD,有PA=DB=PB+PD=PB+PC正確.同時(shí)可得:②錯(cuò)誤,同理易得△PBE∽△PAC,故有PAPE=PBPC;③正確.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為貫徹政府報(bào)告中“大眾創(chuàng)業(yè)、萬眾創(chuàng)新”的精神,某鎮(zhèn)對轄區(qū)內(nèi)所有的小微企業(yè)按年利潤w(萬元)的多少分為以下四個(gè)類型:A類(w<10),B類(10≤w<20),C類(20≤w<30),D類(w≥30),該鎮(zhèn)政府對轄區(qū)內(nèi)所有小微企業(yè)的相關(guān)信息進(jìn)行統(tǒng)計(jì)后,繪制成以下條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請你結(jié)合圖中信息解答下列問題:
(1)該鎮(zhèn)本次統(tǒng)計(jì)的小微企業(yè)總個(gè)數(shù)是 , 扇形統(tǒng)計(jì)圖中B類所對應(yīng)扇形圓心角的度數(shù)為度,請補(bǔ)全條形統(tǒng)計(jì)圖;
(2)為了進(jìn)一步解決小微企業(yè)在發(fā)展中的問題,該鎮(zhèn)政府準(zhǔn)備召開一次座談會(huì),每個(gè)企業(yè)派一名代表參會(huì).計(jì)劃從D類企業(yè)的4個(gè)參會(huì)代表中隨機(jī)抽取2個(gè)發(fā)言,D類企業(yè)的4個(gè)參會(huì)代表中有2個(gè)來自高新區(qū),另2個(gè)來自開發(fā)區(qū).請用列表或畫樹狀圖的方法求出所抽取的2個(gè)發(fā)言代表都來自高新區(qū)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:

我們定義:如果一個(gè)數(shù)的平方等于﹣1,記作i2=﹣1,那么這個(gè)i就叫做虛數(shù)單位.虛數(shù)與我們學(xué)過的實(shí)數(shù)合在一起叫做復(fù)數(shù).一個(gè)復(fù)數(shù)可以表示為a+bi(a,b均為實(shí)數(shù))的形式,其中a叫做它的實(shí)部,b叫做它的虛部.

復(fù)數(shù)的加、減、乘的運(yùn)算與我們學(xué)過的整式加、減、乘的運(yùn)算類似.

例如 計(jì)算:(5+i)+(3﹣4i)=(5+3)+(i﹣4i)=8﹣3i.

根據(jù)上述材料,解決下列問題:

(1)填空:i3=   ,i4=   ;

(2)計(jì)算:(2+i)2

(3)將化為a+bi(a,b均為實(shí)數(shù))的形式(即化為分母中不含i的形式).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,B,C兩點(diǎn)把線段AD分成2:5:3三部分,MAD的中點(diǎn),BM=6cm,求CMAD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是小華利用含30°角的三角板測量樓房高度的示意圖,已知桌子高AB為1米,地面上B和D之間的距離為100米,則樓高CD約為(
A.51米
B.59米
C.88米
D.174米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,n+1個(gè)邊長為2的等邊三角形有一條邊在同一直線上,設(shè)△B2D1C1的面積為S1 , △B3D2C2的面積為S2 , …,△Bn+1DnCn的面積為Sn , 則Sn=(用含n的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1∥l2∥l3 , 且l1與l2的距離為1,l2與l3的距離為2,等腰△ABC的頂點(diǎn)分別在直線l1、l2 , l3上,AB=AC,∠BAC=120°,則等腰三角形的腰長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個(gè)同心圓的半徑分別為4cm和5cm,大圓的一條弦AB與小圓相切,則弦AB的長為(
A.6cm
B.4cm
C.3cm
D.8cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,BC=3AB,A,B兩點(diǎn)的坐標(biāo)分別是(﹣1,0),(0,2),C,D兩點(diǎn)在反比例函數(shù)y= (x<0)的圖象上,則k的值等于

查看答案和解析>>

同步練習(xí)冊答案