【題目】如圖1,E是直線AB,CD內部一點,AB∥CD,連接EA,ED.
(1)探究猜想: ①若∠A=30°,∠D=40°,則∠AED等于多少度?
②若∠A=20°,∠D=60°,則∠AED等于多少度?
③猜想圖1中∠AED,∠EAB,∠EDC的關系并證明你的結論.
(2)拓展應用: 如圖2,射線FE與矩形ABCD的邊AB交于點E,與邊CD交于點F,①②③④分別是被射線FE隔開的4個區(qū)域(不含邊界,其中區(qū)域③、④位于直線AB上方,P是位于以上四個區(qū)域上的點,猜想:∠PEB,∠PFC,∠EPF的關系(不要求證明).
【答案】
(1)解:①∠AED=70°;
②∠AED=80°;
③猜想:∠AED=∠EAB+∠EDC,
證明:延長AE交DC于點F,
∵AB∥DC,
∴∠EAB=∠EFD,
∵∠AED為△EDF的外角,
∴∠AED=∠EDF+∠EFD=∠EAB+∠EDC;
(2)解:根據題意得:
點P在區(qū)域①時,∠EPF=360°﹣(∠PEB+∠PFC);
點P在區(qū)域②時,∠EPF=∠PEB+∠PFC;
點P在區(qū)域③時,∠EPF=∠PEB﹣∠PFC;
點P在區(qū)域④時,∠EPF=∠PFC﹣∠PEB.
【解析】(1)①根據圖形猜想得出所求角度數即可;②根據圖形猜想得出所求角度數即可;③猜想得到三角關系,理由為:延長AE與DC交于F點,由AB與DC平行,利用兩直線平行內錯角相等得到一對角相等,再利用外角性質及等量代換即可得證;(2)分四個區(qū)域分別找出三個角關系即可.
【考點精析】本題主要考查了平行線的性質的相關知識點,需要掌握兩直線平行,同位角相等;兩直線平行,內錯角相等;兩直線平行,同旁內角互補才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】九(3)班“2016年新年聯歡會”中,有一個摸獎游戲,規(guī)則如下:有4張紙牌,背面都是喜羊羊頭像,正面有2張笑臉、2張哭臉.現將4張紙牌洗勻后背面朝上擺放到桌上,然后讓同學去翻紙牌.
(1)現小芳有一次翻牌機會,若正面是笑臉的就獲獎,正面是哭臉的不獲獎.她從中隨機翻開一張紙牌,則小芳獲獎的概率是 ;
(2)如果小芳、小明都有翻兩張牌的機會.小芳先翻一張,放回洗勻后再翻一張;小明同時翻開兩張紙牌.他們各自翻開的兩張紙牌中只要出現笑臉就獲獎.他們獲獎的機會相等嗎?分析說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小華拿24元錢購買火腿腸和方便面,已知一盒方便面3元,一根火腿腸2元,他買了4盒方便面,x根火腿腸,則關于x的不等式表示正確的是( )
A.3×4+2x<24
B.3×4+2x≤24
C.3x+2×4≤24
D.3x+2×4≥24
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com