【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,過點B作射線BB1∥AC.動點D從點A出發(fā)沿射線AC方向以每秒5個單位的速度運動,同時動點E從點C沿射線AC方向以每秒3個單位的速度運動.過點D作DH⊥AB于H,過點E作EF⊥AC交射線BB1于F,G是EF中點,連接DG.設點D運動的時間為t秒.
(1)當t為何值時,AD=AB,并求出此時DE的長度;
(2)當△DEG與△ACB相似時,求t的值.
【答案】(1)當t=1時,AD=AB,AE=1;
(2)當t=或 或 或 時,△DEG與△ACB相似.
【解析】試題分析:(1)根據(jù)勾股定理得出AB=5,要使AD=AB=5,∵動點D每秒5個單位的速度運動,∴t=1;(2)當△DEG與△ACB相似時,要分兩種情況討論,根據(jù)相似三角形的性質,列出比例式,求出DE的表達式時,要分AD<AE和AD>AE兩種情況討論.
試題解析:
(1)∵∠ACB=90°,AC=3,BC=4, ∴AB==5.
∵AD=5t,CE=3t, ∴當AD=AB時,5t=5,即t=1;
∴AE=AC+CE=3+3t=6,DE=6﹣5=1.
(2)∵EF=BC=4,G是EF的中點, ∴GE=2.
當AD<AE(即t<)時,DE=AE﹣AD=3+3t﹣5t=3﹣2t,
若△DEG與△ACB相似,則或 ,
∴或, ∴t=或t=;
當AD>AE(即t>)時,DE=AD﹣AE=5t﹣(3+3t)=2t﹣3,
若△DEG與△ACB相似,則或 , ∴或,
解得t=或t=;
綜上所述,當t=或 或 或 時,△DEG與△ACB相似.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料,回答問題:
(1)在化簡 的過程中,小張和小李的化簡結果不同;
小張的化簡如下: = = = ﹣
小李的化簡如下: = = = ﹣
請判斷誰的化簡結果是正確的,誰的化簡結果是錯誤的,并說明理由.
(2)請你利用上面所學的方法化簡 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB⊥CD,CD⊥BD,∠A=∠FEC.以下是小貝同學證明CD∥EF的推理過程或理由,請你在橫線上補充完整其推理過程或理由.
證明:∵AB⊥CD,CD⊥BD(已知)
∴∠ABD=∠CDB=90°()∴∠ABD+∠CDB=180°.
∴AB∥()()
∵∠A=∠FEC(已知)
∴AB∥()()
∴CD∥EF()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=100°,點D在BC邊上,△ABD和△AFD關于直線AD對稱,∠FAC的平分線交BC于點G,連接FG.
(1)求∠DFG的度數(shù);
(2)設∠BAD=θ, ①當θ為何值時,△DFG為等腰三角形;
②△DFG有可能是直角三角形嗎?若有,請求出相應的θ值;若沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學的許多發(fā)現(xiàn)都曾位居世界前列,其中“楊輝三角”就是一例.如圖,這個三角形的構造法則:兩腰上的數(shù)都是1,其余每個數(shù)均為其上方左右兩數(shù)之和,它給出了(a+b)n(n為正整數(shù))的展開式(按a的次數(shù)由大到小的順序排列)的系數(shù)規(guī)律.例如,在三角形中第三行的三個數(shù)1,2,1,恰好對應(a+b)2=a2+2ab+b2展開式中的系數(shù);第四行的四個數(shù)1,3,3,1,恰好對應著(a+b)3=a3+3a2b+3ab2+b3展開式中的系數(shù)等等.
(1)根據(jù)上面的規(guī)律,寫出(a+b)5的展開式.
(2)利用上面的規(guī)律計算:25﹣5×24+10×23﹣10×22+5×2﹣1.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,從點P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),…依次擴展下去,則P2017的坐標為( )
A.(504,﹣504)
B.(﹣504,504)
C.(﹣504,503)
D.(﹣505,504)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C→A方向運動,且速度為每秒2cm,它們同時出發(fā),設出發(fā)的時間為t秒.
(1)出發(fā)2秒后,求PQ的長;
(2)從出發(fā)幾秒鐘后,△PQB第一次能形成等腰三角形?
(3)當點Q在邊CA上運動時,求能使△BCQ成為等腰三角形的運動時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C→A方向運動,且速度為每秒2cm,它們同時出發(fā),設出發(fā)的時間為t秒.
(1)出發(fā)2秒后,求PQ的長;
(2)從出發(fā)幾秒鐘后,△PQB第一次能形成等腰三角形?
(3)當點Q在邊CA上運動時,求能使△BCQ成為等腰三角形的運動時間.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com