【題目】如圖所示是一塊含30°的直角三角板,直角頂點(diǎn)O位于坐標(biāo)原點(diǎn),斜邊AB⊥x軸,頂點(diǎn)A在函數(shù)(x>0)的圖象上,頂點(diǎn)B在函數(shù)(x>0)的圖象上,∠ABO=30°,則k=_________.
【答案】-6
【解析】設(shè)AC=a,則OA=2a,OC=,根據(jù)直角三角形30°角的性質(zhì)和勾股定理分別計(jì)算點(diǎn)A和B的坐標(biāo),代入解析式求出k的值.
如圖,Rt△AOB中,∠B=30°,∠AOB=90°, ∴∠OAC=60°,∵AB⊥OC,
∴∠ACO=90°, ∴∠AOC=30°, 設(shè)AC=a,則OA=2a,OC=,∴A(,a),
∵A在函數(shù)y=(x>0)的圖象上, ∴=2, Rt△BOC中,OB=2OC=2,
∴BC=3a, ∴B(,-3a), ∵B在函數(shù)y=(x>0)的圖象上,
∴k=-3a×=-3=-3×2=-6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AC為直徑,BD=BA,BE⊥DC交DC的延長線于點(diǎn)E
(1) 求證:BE是⊙O的切線
(2) 若EC=1,CD=3,求cos∠DBA
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給下列證明過程填寫理由.
如圖,CD⊥AB于D,點(diǎn)F是BC上任意一點(diǎn),EF⊥AB于E,∠1=∠2,求證:∠ACB=∠3.
請閱讀下面解答過程,并補(bǔ)全所有內(nèi)容.
解:∵CD⊥AB,EF⊥AB(已知)
∴∠BEF=∠BDC=90°( )
∴EF∥DC( )
∴∠2=________( )
又∵∠2=∠1(已知)
∴∠1=_______(等量代換)
∴DG∥BC( )
∴∠3=________( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年9月,重慶來福士廣場正式開放購物中心,小開家準(zhǔn)備將購物中心一間店面分成,,C三個區(qū)域來經(jīng)營三種商品.爸爸計(jì)劃好三個區(qū)域的占地面積后,小開主動幫助爸爸劃分三個區(qū)域的占地面積,劃分完畢后,爸爸發(fā)現(xiàn)小開粗心地將原區(qū)的面積錯劃分給了區(qū),而原區(qū)的面積錯劃分給了區(qū),區(qū)面積未出錯,造成現(xiàn)區(qū)的面積占,兩區(qū)面積和的比例達(dá)到了.為了協(xié)調(diào)三個區(qū)域的面積占比,爸爸只好將區(qū)面積的分兩部分劃分給現(xiàn)在的區(qū)和區(qū).若爸爸劃分完后,,,三個區(qū)域的面積比變?yōu)?/span>.那么爸爸從區(qū)劃分給區(qū)的面積與店面總面積的比為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知坐標(biāo)平面內(nèi)的三個點(diǎn),,,把向下平移個單位再向右平移個單位后得到.
(1)直接寫出,,三個對應(yīng)點(diǎn)、、的坐標(biāo);
(2)畫出將繞點(diǎn)逆時針方向旋轉(zhuǎn)后得到;
(3)求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,要使它成為菱形,那么需要添加的條件可以是( )
A.AC=BD B.AB=AC C.∠ABC=90°D.AC⊥BD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90,∠ABC=2∠A,點(diǎn)O在AC上,OA=OB,以O為圓心,OC為半徑作圓.
(1)求證:AB是⊙O的切線;
(2)若BC=3,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ABC與∠ACB的平分線交于點(diǎn)F,過點(diǎn)F作DE∥BC交AB于點(diǎn)D,交AC于點(diǎn)E,那么下列結(jié)論:
①△BDF和△CEF都是等腰三角形;
②DE=BD+CE;
③△ADE的周長等于AB與AC的和;
④BF=CF.
其中正確的有( 。
A. ①②③ B. ①②③④ C. ①② D. ①
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先化簡再求值:
(1)[(xy+2)(xy﹣2)﹣2x2y2+4]÷(xy),其中x=10,y=
(2)(x+2y)2﹣(x+y)(3x﹣y)﹣5y2,其中x=﹣2,y=
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com