【題目】一架外國偵察機沿方向侵入我國領(lǐng)空進行非法偵察,我空軍的戰(zhàn)斗機沿方向與外國偵察機平行飛行,進行跟蹤監(jiān)視,我機在處與外國偵察機處的距離為米,為,這時外國偵察機突然轉(zhuǎn)向,以偏左的方向飛行,我機繼續(xù)沿方向以米/秒的速度飛行,外國偵察機在點故意撞擊我戰(zhàn)斗機,使我戰(zhàn)斗機受損.問外國偵察機由到的速度是多少?(結(jié)果保留整數(shù),參考數(shù)據(jù),)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知矩形 OABC,以點 O 為坐標原點建立平面直角坐標系,其中 A(2,0), C(0,3),點 P 以每秒 1 個單位的速度從點 C 出發(fā)在射線 CO 上運動,連接 BP,作 BE⊥PB 交 x 軸于點 E,連接 PE 交 AB 于點 F,設運動時間為 t 秒.
(1)當 t=2 時,求點 E 的坐標;
(2)在運動的過程中,是否存在以 P、O、E 為頂點的三角形與△PCB 相似.若存在,請求出點 P 的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,,,是的兩條角平分線,且,交于點.
(1)如圖1,用等式表示,,這三條線段之間的數(shù)量關(guān)系,并證明你的結(jié)論;
小東通過觀察、實驗,提出猜想:.他發(fā)現(xiàn)先在上截取,使,連接,再利用三角形全等的判定和性質(zhì)證明即可.
①下面是小東證明該猜想的部分思路,請補充完整:
ⅰ)在上截取,使,連接,則可以證明與 全等,判定它們?nèi)鹊囊罁?jù)是 ;
ⅱ)由,,是的兩條角平分線,可以得出 °;
②請直接利用ⅰ),ⅱ)已得到的結(jié)論,完成證明猜想的過程.
(2)如圖2,若 ,求證:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“低碳生活,綠色出行”是我們倡導的一種生活方式,有關(guān)部門調(diào)查了某單位員工上下班的交通方式,繪制了如下統(tǒng)計圖:
(1)填空:本次調(diào)查的總?cè)藬?shù)為 人,開私家車的人數(shù)m= ,扇形統(tǒng)計圖中“騎自行車”所在扇形的圓心角為 度;
(2)補全條形統(tǒng)計圖;
(3)若該單位共有2000人,請估算該單位騎自行車上下班的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直徑為1000毫米的圓柱形油罐內(nèi)裝進一些油.其橫截面如圖.油面寬AB=600毫米.
(1)求油的最大深度;
(2)如果再注入一些油后,油面寬變?yōu)?/span>800毫米,此時油面上升了多少毫米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的圖象與軸交于點、,且,與軸的正半軸的交點在的下方.下列結(jié)論:①;②;③;④.其中正確結(jié)論的個數(shù)是( )個.
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:為的直徑,為延長線上的任意一點,過點作的切線,切點為,的平分線與交于點.
(1)如圖,若恰好等于,求的度數(shù);
(2)如圖,若點位于中不同的位置,的結(jié)論是否仍然成立?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是8×8的正方形網(wǎng)格,請在所給網(wǎng)格中按下列要求操作:
(1)在網(wǎng)格中建立平面直角坐標系,使點A的坐標為(﹣2,4),點B的坐標為(﹣4,2);
(2)在第二象限內(nèi)的格點上畫一點C,連接AC,BC,使△BC成為以AB為底的等腰三角形,且腰長是無理數(shù).
①此時點C的坐標為 ,△ABC的周長為 (結(jié)果保留根號);
②畫出△ABC關(guān)于y軸對稱的△A′B'C′(點A,B,C的對應點分別A',B',C′),并寫出A′,B′,C′的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com