精英家教網 > 初中數學 > 題目詳情

【題目】如圖①,在平面直角坐標系xOy 中,拋物線y=ax2+bx+3經過點A(-1,0) 、B(3,0) 兩點,且與y軸交于點C

.

(1)求拋物線的表達式;

(2)如圖②,用寬為4個單位長度的直尺垂直于x軸,并沿x軸左右平移,直尺的左右兩邊所在的直線與拋物線相交于P、 Q兩點(點P在點Q的左側),連接PQ,在線段PQ上方拋物線上有一動點D,連接DP、DQ.

①若點P的橫坐標為,求DPQ面積的最大值,并求此時點D 的坐標;

②直尺在平移過程中,DPQ面積是否有最大值?若有,求出面積的最大值;若沒有,請說明理由.

【答案】(1)拋物線y=-x2+2x+3;(2)①點D( );PQD面積的最大值為8

【解析】(1)根據點A、B的坐標,利用待定系數法即可求出拋物線的表達式;
(2)(I)由點P的橫坐標可得出點P、Q的坐標,利用待定系數法可求出直線PQ的表達式,過點DDEy軸交直線PQ于點E,設點D的坐標為(x,-x2+2x+3),則點E的坐標為(x,-x+),進而即可得出DE的長度,利用三角形的面積公式可得出SDPQ=-2x2+6x+,再利用二次函數的性質即可解決最值問題;
(II)假設存在,設點P的橫坐標為t,則點Q的橫坐標為4+t,進而可得出點P、Q的坐標,利用待定系數法可求出直線PQ的表達式,設點D的坐標為(x,-x2+2x+3),則點E的坐標為(x,-2(t+1)x+t2+4t+3),進而即可得出DE的長度,利用三角形的面積公式可得出SDPQ=-2x2+4(t+2)x-2t2-8t,再利用二次函數的性質即可解決最值問題.

1)將A(-1,0)、B(3,0)代入y=ax2+bx+3,得:

,解得:
∴拋物線的表達式為y=-x2+2x+3.
(2)(I)當點P的橫坐標為-時,點Q的橫坐標為,
∴此時點P的坐標為(-,),點Q的坐標為(,-).
設直線PQ的表達式為y=mx+n,
P(-,)、Q(,-代入y=mx+n,得:

,解得:

∴直線PQ的表達式為y=-x+
如圖②,過點DDEy軸交直線PQ于點E,


設點D的坐標為(x,-x2+2x+3),則點E的坐標為(x,-x+),
DE=-x2+2x+3-(-x+)=-x2+3x+
SDPQ=DE(xQ-xP)=-2x2+6x+=-2(x-2+8.
-2<0,
∴當x=時,DPQ的面積取最大值,最大值為8,此時點D的坐標為(,).
(II)假設存在,設點P的橫坐標為t,則點Q的橫坐標為4+t,
∴點P的坐標為(t,-t2+2t+3),點Q的坐標為(4+t,-(4+t)2+2(4+t)+3),
利用待定系數法易知,直線PQ的表達式為y=-2(t+1)x+t2+4t+3.
設點D的坐標為(x,-x2+2x+3),則點E的坐標為(x,-2(t+1)x+t2+4t+3),
DE=-x2+2x+3-[-2(t+1)x+t2+4t+3]=-x2+2(t+2)x-t2-4t,
SDPQ=DE(xQ-xP)=-2x2+4(t+2)x-2t2-8t=-2[x-(t+2)]2+8.
-2<0,
∴當x=t+2時,DPQ的面積取最大值,最大值為8.
∴假設成立,即直尺在平移過程中,DPQ面積有最大值,面積的最大值為8.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】ABC 中,D BC 邊的中點,E、F 分別在 AD 及其延長線上,CEBF,連接BE、CF.

(1)求證:BDF ≌△CDE;

(2)若 DE =BC,試判斷四邊形 BFCE 是怎樣的四邊形,并證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】11·湖州)(本小題10分)

如圖,已知E、F分別是□ABCD的邊BC、AD上的點,且BE=DF。

求證:四邊形AECF是平行四邊形;

BC=10∠BAC=90°,且四邊形AECF是菱形,求BE的長。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,拋物線(m>0)的頂點為A,直線軸的交點為點B.

(1)求出拋物線的對稱軸及頂點A的坐標(用含的代數式表示);

(2)證明點A在直線上,并求∠OAB的度數;

(3)動點Q在拋物線對稱軸上,問:拋物線上是否存在點P,使以點P、Q、A為頂點的三角形與OAB全等?若存在,求出的值,并寫出所有符合上述條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下面是某同學對多項式(x22x)(x22x+2)+1進行因式分解的過程:

解:設x22xy

原式=y (y+2)+1 (第一步)

y2+2y+1 (第二步)

(y+1)2 (第三步)

(x22x+1)2 (第四步)

請問:

1)該同學因式分解的結果是否徹底?   (填徹底不徹底),若不徹底,則該因式分解的最終結果為

2)請你模仿上述方法,對多項式(x24x+2)(x24x+6)+4進行因式分解.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點B,FC,E在直線lF,C之間不能直接測量,點ADl異側,測得AB=DE,AC=DF,BF=EC.

1求證:ABC≌△DEF;

2指出圖中所有平行的線段,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC中,∠BAC=90°,ADBC,ABC的平分線BEAD于點F,AG平分∠DAC.給出下列結論:①∠BAD=C;AE=AF;③∠EBC=C;FGAC;EF=FG.其中正確的結論是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ACF≌△DBE,其中點A、BC、D在一條直線上.

1)若BEAD,∠F=62°,求∠A的大小.

2)若AD=9cmBC=5cm,求AB的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某土產公司組織20輛汽車裝運甲、乙、丙三種土特產共120噸去外地銷售按計劃20輛車都要裝運,每輛汽車只能裝運同一種土特產,且必須裝滿,根據下表提供的信息,解答以下問題

土特產種類

每輛汽車運載量(噸)

8

6

5

每噸土特產獲利(百元)

12

16

10

(1)設裝運甲種土特產的車輛數為x,裝運乙種土特產的車輛數為y,求y與x之間的函數關系式;

(2)如果裝運每種土特產的車輛都不少于3輛,那么車輛的安排方案有幾種?并寫出每種安排方案

(3)若要使此次銷售獲利最大,應采用(2)中哪種安排方案?并求出最大利潤的值

查看答案和解析>>

同步練習冊答案