【題目】某九年級制學校圍繞每天30分鐘的大課間,你最喜歡的體育活動項目是什么?(只寫一項)的問題,對在校學生進行隨機抽樣調查,從而得到一組數(shù)據(jù).圖1是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計圖,請結合統(tǒng)計圖回答下列問題:

(1)該校對多少學生進行了抽樣調查?

(2)本次抽樣調查中,最喜歡籃球活動的有多少?占被調查人數(shù)的百分比是多少?

(3)若該校九年級共有200名學生,圖2是根據(jù)各年級學生人數(shù)占全校學生總人數(shù)的百分比繪制的扇形統(tǒng)計圖,請你估計全校學生中最喜歡跳繩活動的人數(shù)約為多少?

【答案】(1)50(2)36%(3)160

【解析】

(1)根據(jù)條形圖的意義,將各組人數(shù)依次相加即可得到答案;(2)根據(jù)條形圖可直接得到最喜歡籃球活動的人數(shù),除以(1)中的調查總人數(shù)即可得出其所占的百分比;(3)用樣本估計總體,先求出九年級占全?側藬(shù)的百分比,然后求出全校的總人數(shù);再根據(jù)最喜歡跳繩活動的學生所占的百分比,繼而可估計出全校學生中最喜歡跳繩活動的人數(shù).

(1)該校對名學生進行了抽樣調查.

本次調查中,最喜歡籃球活動的有人,

,

∴最喜歡籃球活動的人數(shù)占被調查人數(shù)的

(3),

人,

人.

答:估計全校學生中最喜歡跳繩活動的人數(shù)約為人.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】按要求解下列方程.
(1)(x﹣3)2=16
(2)x2﹣4x=5(配方法)
(3)x2﹣4x﹣5=0(公式法)
(4)x2﹣5x=0(因式分解法)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2+4x+3交x軸于A、B兩點,(A在B左側),交y軸于點C.

(1)求A、B、C三點的坐標.
(2)求拋物線的對稱軸及頂點坐標.
(3)拋物線上是否存在點F,使△ABF的面積為1?若存在,求F點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABN△ACM位置如圖所示,AB=AC,AD=AE,∠1=∠2

1)求證:BD=CE;

2)求證:∠M=∠N

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是張亮、李娜兩位同學零花錢全學期各項支出的統(tǒng)計圖.根據(jù)統(tǒng)計圖,下列對兩位同學購買書籍支出占全學期總支出的百分比作出的判斷中,正確的是(

A. 張亮的百分比比李娜的百分比大 B. 張娜的百分比比張亮的百分比大

C. 張亮的百分比與李娜的百分比一樣大 D. 無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:
在學習《圓》這一章時,老師給同學們布置了一道尺規(guī)作圖題:
尺規(guī)作圖:過圓外一點作圖的切線。
已知:P為圓O外一點。
求作:經過點P的圓O的切線。

小敏的作法如下:
①連接OP,作線段OP的垂直平分線MN交OP于點C;
②以點C為圓心,CO的長為半徑作圓交圓O于A、B兩點;
③作直線PA、PB,所以直線PA、PB就是所求作的切線。

老師認為小敏的作法正確.
請回答:連接OA,OB后,可證∠OAP=∠OBP=90°,其依據(jù)是;由此可證明直線PA,PB都是⊙O的切線,其依據(jù)是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為4的正方形ABCD中,對角線AC,BD相交于點O,點EAD邊上一點,連接CE,把CDE沿CE翻折,得到CPE,EPAC于點FCPBD于點G,連接PO,若POBC,則四邊形OFPG的面積是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《九章算術》中記載了這樣一道題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”用現(xiàn)代的語言表述為:“如果AB為⊙O的直徑,弦CD⊥AB于E,AE=1寸,CD=10寸,那么直徑AB的長為多少寸?”請你補全示意圖,并求出AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,BD平分∠ABC,EF垂直平分BDCA延長線于點E.

(1)求證:ED2=EAEC;

(2)若ED=6,BD=CD=3,求BC的長.

查看答案和解析>>

同步練習冊答案