若x、y、z為整數(shù),且|x-y|1999+|z-x|2001=1,則|z-x|+|x-y|+|y-z|的值為(  )
A、2B、1C、0D、3
考點(diǎn):絕對(duì)值
專題:
分析:由于x,y,z為整數(shù),且|x-y|1999+|z-x|2001=1,則|x-y|1999和|z-x|2001=1必須一項(xiàng)為0,一項(xiàng)為1.依此得出x,y,z之間的關(guān)系,從而求解.
解答:解:∵x,y,z為整數(shù),且|x-y|1999+|z-x|2001=1,
|x-y|1999和|z-x|2001=1必須一項(xiàng)為0,一項(xiàng)為1.
假設(shè)x-y=0,|z-x|=1,
所以x=y,
所以|z-y|=1.
原式=1+0+1=2;
假設(shè)x-y=1,|z-x|=0,
所以x=z,
所以|x-y|=1,|y-x|=1,
原式=0+1+1=2.
故選:A.
點(diǎn)評(píng):本題考查了有理數(shù)的乘方和絕對(duì)值的性質(zhì),由x,y,z為整數(shù),和已知條件得出|x-y|1999和|z-x|2001必須一項(xiàng)為0,一項(xiàng)為1是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程x2-2(m+1)x+m2-3=0,當(dāng)m取何值時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知等腰梯形的面積為240cm2,高比上底長4cm,比下底短20cm,則這個(gè)梯形的周長是
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,?ABCD中,O是對(duì)角線BD中點(diǎn),過點(diǎn)O的直線和AD、BC分別相交于E、F,AM平分∠BAD,CN平分∠DCB.請(qǐng)?jiān)谄叫兴倪呅蜛BCD的基礎(chǔ)上添加適當(dāng)?shù)臈l件,構(gòu)造新的平行四邊形,進(jìn)而談?wù)勀愕母邢耄?/div>

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)a≠b,且a,b滿足a2-8a+5=0,b2-8b+5=0,則代數(shù)式
b-1
a-1
+
a-1
b-1
的值為( 。
A、-20B、2
C、2或-20D、2或20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD中,AB=6cm,AC=10cm,有一動(dòng)點(diǎn)P,從點(diǎn)B開始,沿由B向A,再由A向D,再由D向C的方向運(yùn)動(dòng),已知每秒鐘點(diǎn)P的運(yùn)動(dòng)方向距離為2cm,試求△PBC的面積S(cm2)與運(yùn)動(dòng)時(shí)間t(秒)的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用配方法證明:-10x2+7x-4<0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

醫(yī)院用甲、乙兩種原料為手術(shù)后的病人配制營養(yǎng)品,每克甲種原料含0.5單位的蛋白質(zhì)和1單位鐵質(zhì),每克乙種原料含0.7單位的蛋白質(zhì)和0.4單位鐵質(zhì),已知病人每餐需要35單位的蛋白質(zhì)和40單位鐵質(zhì).
(1)每餐甲、乙兩種原料各多少克恰能滿足病人的需要?設(shè)每餐需要甲、乙兩種原料分別為x、y克,填寫下表并列出方程組并完成解答:
 甲種原料x克乙種原料y克所配置的營養(yǎng)品
所含蛋白質(zhì)(單位)0.5x
 
 
 
所含鐵質(zhì)(單位)
 
0.4y
 
 
(2)若要求營養(yǎng)品中甲、乙兩種原料共含有60克,且兩種原料的含量都為整數(shù)克,則共有幾種配置方案?(不需要寫出具體方案)
(3)在(2)的基礎(chǔ)上,若甲種原料0.5元/克,乙種原料0.45元/克,則如何配置營養(yǎng)品才能使得每餐的費(fèi)用最低?每餐最低費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=2x2經(jīng)過若干次平移后,最后得到的拋物線最低點(diǎn)是(2,3),求平移后的拋物線的函數(shù).

查看答案和解析>>

同步練習(xí)冊答案