【題目】計(jì)算:

123(﹣3+2×(﹣4);

2)﹣1.53×0.750.53×);

3)﹣14+|35|16÷(﹣2×

4)﹣14+×[2×(﹣6)﹣(﹣42]

【答案】133;(2)﹣;(35;(4)-8

【解析】

1)根據(jù)有理數(shù)的乘法和加減法可以解答本題;

2)根據(jù)乘法分配律可以解答本題;

3)根據(jù)有理數(shù)的乘方、有理數(shù)的乘除法和加減法可以解答本題;

4)根據(jù)有理數(shù)的乘方、有理數(shù)的乘法和加減法可以解答本題.

解:(123(﹣3+2×(﹣4

23+18+(﹣8

33

2)﹣1.53×0.750.53×

=﹣1.53×+0.53×

=(﹣1.53+0.53×

=(﹣1×

=﹣;

3)﹣14+|35|16÷(﹣2×

=﹣1+2+16×

=﹣1+2+4

5;

4)﹣14+×[2×(﹣6)﹣(﹣42]

=﹣1+×(﹣1216

=﹣1+×(﹣28

=﹣1+(﹣7

=﹣8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,正方形網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)都是1,每個(gè)小正方形的頂點(diǎn)叫作格點(diǎn).ABC的三個(gè)頂點(diǎn)AB,C都在格點(diǎn)上,將ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)90°得到ABC

1)在正方形網(wǎng)格中,畫出AB'C;

2)畫出ABC向左平移4格后的ABC;

3)計(jì)算線段AB在變換到AB的過程中掃過區(qū)域的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四邊形OABC中,ABOC,OAB90°, OCB60°,AB2OA2.

(1)如圖①,連接OB,請(qǐng)直接寫出OB的長(zhǎng)度;

(2)如圖②,過點(diǎn)OOHBC于點(diǎn)H.動(dòng)點(diǎn)P從點(diǎn)H出發(fā),沿線段HO向點(diǎn)O運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),沿線段OA向點(diǎn)A運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),速度都為每秒1個(gè)單位長(zhǎng)度,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒,OPQ的面積為S(平方單位)

①求St之間的函數(shù)關(guān)系式;

②設(shè)PQOB交于點(diǎn)M,當(dāng)OPM為等腰三角形時(shí),試求出OPQ的面積S的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,二次函數(shù)y=ax2+bx+ca≠0)的圖象的對(duì)稱軸是直線x=1,且經(jīng)過點(diǎn)(0,2).有下列結(jié)論:

①ac0;②b2﹣4ac0;③a+c2﹣b;④a⑤x=﹣5x=7時(shí)函數(shù)值相等.

其中正確的結(jié)論有(

A1個(gè) B2個(gè) C3個(gè) D4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線與x軸交于A、D兩點(diǎn),與y軸交于點(diǎn)B,四邊形OBCD是矩形,點(diǎn)A的坐標(biāo)為1,0,點(diǎn)B的坐標(biāo)為0,4,已知點(diǎn)Em,0是線段DO上的動(dòng)點(diǎn),過點(diǎn)E作PEx軸交拋物線于點(diǎn)P,交BC于點(diǎn)G,交BD于點(diǎn)H

1求該拋物線的解析式;

2當(dāng)點(diǎn)P在直線BC上方時(shí),請(qǐng)用含m的代數(shù)式表示PG的長(zhǎng)度;

32的條件下,是否存在這樣的點(diǎn)P,使得以P、B、G為頂點(diǎn)的三角形與DEH相似?若存在,求出此時(shí)m的值;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】類似乘方,我們把求若干個(gè)相同的不為零的有理數(shù)的除法運(yùn)算叫做除方2÷2÷2,(﹣3÷(﹣3÷(﹣3÷(﹣3)等,并將2÷2÷2記作2,讀作“2的圈3次方;(﹣3÷(﹣3÷(﹣3÷(﹣3)記作(﹣3,讀作3的圈4次方

1)直接寫出結(jié)果:2   ,(﹣3   ,(   

2)計(jì)算:24÷23+(﹣8×2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O是正ABC內(nèi)一點(diǎn),OA3,OB4,OC5,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO,下列結(jié)論:①△BOA可以由BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;②點(diǎn)OO的距離為4;③∠AOB150°;④S四邊形AOBO63.其中正確的結(jié)論有(

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D,E分別是邊ABAC的中點(diǎn),過點(diǎn)CCFABDE的延長(zhǎng)線于點(diǎn)F,連接BE

1)求證:四邊形BCFD是平行四邊形.

2)當(dāng)AB=BC時(shí),若BD=2,BE=3,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線軸、軸分別交于、兩點(diǎn),點(diǎn)軸上一動(dòng)點(diǎn),要使點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)剛好落在軸上,則此時(shí)點(diǎn)的坐標(biāo)是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案