【題目】如圖,在四邊形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,點(diǎn)E是邊CD的中點(diǎn),連接BE并延長交AD的延長線于點(diǎn)F,連接CF.
(1)求證:四邊形BDFC是平行四邊形;
(2)若CB=CD,求四邊形BDFC的面積.
【答案】(1)見解析 (2)3
【解析】
(1)證明△BEC△FED,利用一組對邊平行且相等的四邊形是平行四邊形即可判定.
(2)過C點(diǎn)作CH⊥AF,可證四邊形ABCH為矩形,求得DH的長,利用勾股定理求出CH的長,利用平行四邊形的面積公式即可求解.
(1)∵∠A=∠ABC=90°
∴BC∥AF
∴∠BCD=∠FDE,∠CBE=∠DFE
又∵點(diǎn)E是邊CD的中點(diǎn)
∴CE=DE
∴△BCE△FDE(AAS)
∴BC=DF
又BC∥DF
∴四邊形BDFC是平行四邊形
(2) )過C點(diǎn)作CH⊥AF于H點(diǎn).
則∠AHC=∠A=∠ABC=90°
∴四邊形ABCH為矩形
∴AH=BC=3
∵AD=1
∴DH=2
又∵CB=CD
∴CD=3
根據(jù)勾股定理得:CH=
∴S四邊形BDFC=3
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李大爺按每千克2.1元批發(fā)了一批黃瓜到鎮(zhèn)上出售,為了方便,他帶了一些零錢備用.他先按市場售出一些后,又降低出售.售出黃瓜千克數(shù)x與他手中持有的錢數(shù)y元(含備用零錢)的關(guān)系如圖所示,結(jié)合圖象回答下列問題:
(1)李大爺自帶的零錢是多少?
(2)降價前他每千克黃瓜出售的價格是多少?
(3)賣了幾天,黃瓜賣相不好了,隨后他按每千克下降1.6元將剩余的黃瓜售完,這時他手中的錢(含備用的錢)是530元,問他一共批發(fā)了多少千克的黃瓜?
(4)請問李大爺虧了還是賺了?若虧(賺)了,虧(賺)多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張老師從咸寧出發(fā)到外地參加教育信息化應(yīng)用技術(shù)提高培訓(xùn),他可以乘坐普通列車,也可以乘坐高鐵,已知高鐵的行駛路程是400千米,普通列車的行駛路程是高鐵行駛路程的1.3倍.若高鐵的平均速度(千米/小時)是普通列車平均速度的2.5倍,且乘坐高鐵所需時間比乘坐普通列車所需時間少3小時,求高鐵的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究題
已知:如圖1,,.求證:.
老師要求學(xué)生在完成這道教材上的題目證明后,嘗試對圖形進(jìn)行變式,繼續(xù)做拓展探究,看看有什么新發(fā)現(xiàn)?
(1)小穎首先完成了對這道題的證明,在證明過程中她用到了平行線的一條性質(zhì),小穎用到的平行線性質(zhì)可能是 .
(2)接下來,小穎用《幾何畫板》對圖形進(jìn)行了變式,她先畫了兩條平行線,然后在平行線間畫了一點(diǎn),連接后,用鼠標(biāo)拖動點(diǎn),分別得到了圖2,3,4,小穎發(fā)現(xiàn)圖3正是上面題目的原型,于是她由上題的結(jié)論猜想到圖2和4中的、與之間也可能存在著某種數(shù)量關(guān)系.于是她利用《幾何畫板》的度量與計算功能,找到了這三個角之間的數(shù)量關(guān)系.
請你在小穎操作探究的基礎(chǔ)上,繼續(xù)完成下面的問題:
①猜想圖2中、與之間的數(shù)量關(guān)系并加以證明;
②補(bǔ)全圖4,直接寫出、與之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個反比例函數(shù),在第一象限內(nèi)的圖象如圖所示,點(diǎn)P1,P2,P3,……P2005在反比例函數(shù)圖象上,它們的橫坐標(biāo)分別是x1,x2,x3,x2005縱坐標(biāo)分別為1,3,5,……;
共2005個連續(xù)奇數(shù),過點(diǎn)P1,P2,P3,……,P2005分別作軸的平行線,與的圖象交點(diǎn)依次是Q1(x1,y1),Q2(x2,y2),Q3(x3,y3),……,Q2005(x2005,y2005),則_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:在四邊形ABFC中,=90的垂直平分線EF交BC于點(diǎn)D,交AB于點(diǎn)E,且CF=AE
(1)試探究,四邊形BECF是什么特殊的四邊形;
(2)當(dāng)的大小滿足什么條件時,四邊形BECF是正方形?請回答并證明你的結(jié)論.
(特別提醒:表示角最好用數(shù)字)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周末,身高都為1.6米的小芳、小麗來到溪江公園,準(zhǔn)備用她們所學(xué)的知識測算南塔的高度.如圖,小芳站在A處測得她看塔頂?shù)难鼋?/span>α為45°,小麗站在B處(A、B與塔的軸心共線)測得她看塔頂?shù)难鼋?/span>β為30°.她們又測出A、B兩點(diǎn)的距離為30米.假設(shè)她們的眼睛離頭頂都為10cm,則可計算出塔高約為(結(jié)果精確到0.01,參考數(shù)據(jù): ≈1.414, ≈1.732)( 。
A. 36.21米 B. 37.71米 C. 40.98米 D. 42.48米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個反比例函數(shù)和在第一象限內(nèi)的圖象如圖所示,點(diǎn)P在的圖象上,軸于點(diǎn)C,交的圖象于點(diǎn)軸于點(diǎn)D,交的圖象于點(diǎn)B,當(dāng)點(diǎn)P在的圖象上運(yùn)動時,下列結(jié)論錯誤的是( 。
A. 與的面積相等
B. 當(dāng)點(diǎn)A是PC的中點(diǎn)時,點(diǎn)B一定是PD的中點(diǎn)
C. 只有當(dāng)四邊形OCPD為正方形時,四邊形PAOB的面積最大
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列文字:
我們知道,對于一個圖形,通過兩種不同的方法計算它的面積,可以得到一個數(shù)學(xué)等式,例如由如圖給出了若干個邊長為和邊長為的小正方形紙片及若干個邊長為的長方形紙片,如圖是由如圖提供的幾何圖形拼接而得,可以得到
請解答下列問題:
(1)請寫出如圖中所表示的數(shù)學(xué)等式:______________________________;
(2)用(1)中所得到的結(jié)論,解決下面的問題:已知則的值為_________.
(3)①請按要求利用所給的紙片拼出一個長方形,要求所拼出圖形的面積為并將所拼出的圖像畫在的方框中;
②再利用另一種計算面積的方法,可將多項式分解因式,即_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com