【題目】如圖,在菱形ABCD中,∠BAD=80°,AB的垂直平分線交對角線AC于點F,E為垂足,連結(jié)DF,則∠CDF等于( )
A. 80° B. 70° C. 65° D. 60°
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,圖形G的投影矩形定義如下:矩形的兩組對邊分別平行于x軸,y軸,圖形G的頂點在矩形的邊上或內(nèi)部,且矩形的面積最。O(shè)矩形的較長的邊與較短的邊的比為k,我們稱常數(shù)k為圖形G的投影比.如圖1,矩形ABCD為△DEF的投影矩形,其投影比.
(1)如圖2,若點A(1,3),B(3,5),則△OAB投影比k的值為 .
(2)已知點C(4,0),在函數(shù)y=2x﹣4(其中x<2)的圖象上有一點D,若△OCD的投影比k=2,求點D的坐標(biāo).
(3)已知點E(3,2),在直線y=x+1上有一點F(5,a)和一動點P,若△PEF的投影比1<k<2,則點P的橫坐標(biāo)m的取值范圍 (直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+2x+6(a≠0)交x軸與A,B兩點(點A在點B左側(cè)),將直尺WXYZ與x軸負(fù)方向成45°放置,邊WZ經(jīng)過拋物線上的點C(4,m),與拋物線的另一交點為點D,直尺被x軸截得的線段EF=2,且△CEF的面積為6.
(1)求該拋物線的解析式;
(2)探究:在直線AC上方的拋物線上是否存在一點P,使得△ACP的面積最大?若存在,請求出面積的最大值及此時點P的坐標(biāo);若不存在,請說明理由.
(3)將直尺以每秒2個單位的速度沿x軸向左平移,設(shè)平移的時間為t秒,平移后的直尺為W′X′Y′Z′,其中邊X′Y′所在的直線與x軸交于點M,與拋物線的其中一個交點為點N,請直接寫出當(dāng)t為何值時,可使得以C、D、M、N為頂點的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,動點P從點B出發(fā),沿矩形的邊由運動,設(shè)點P運動的路程為x,的面積為y,把y看作x的函數(shù),函數(shù)的圖像如圖2所示,則的面積為( )
A. 10 B. 16 C. 18 D. 20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一條開口向上的拋物線的頂點坐標(biāo)是(-1,2),則它有( )
A. 最大值1 B. 最大值-1 C. 最小值2 D. 最小值-2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com