如圖所示的一張矩形紙片ABCD(AD>AB),將紙片折疊一次,使點A與C重合,再展開,折痕EF交AD邊于點E,交BC邊于點F,分別連接AF和CE,則可以判定四邊形AFCE的形狀是________.

菱形
分析:由四邊形ABCD是矩形與折疊的性質(zhì),易證得△AOE≌△COF,即可得AE=CF,則可證得四邊形AFCE是平行四邊形,又由AC⊥EF,則可證得四邊形AFCE是菱形.
解答:四邊形AFCE的形狀是菱形,理由如下:
∵四邊形ABCD是矩形,
∴AD∥BC,
∴∠EAO=∠FCO,
由折疊的性質(zhì)可得:OA=OC,AC⊥EF,
∵在△AOE和△COF中,
,
∴△AOE≌△COF(ASA),
∴AE=CF,
∴四邊形AFCE是平行四邊形,
∵AC⊥EF,
∴四邊形AFCE是菱形.
點評:此題考查了折疊的性質(zhì)、矩形的性質(zhì)、菱形的判定與性質(zhì)以及勾股定理等知識.此題難度較大,注意折疊中的對應(yīng)關(guān)系,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:中華題王 數(shù)學(xué) 八年級上 (人教版) 人教版 題型:059

(如圖所示)取一張矩形的紙進(jìn)行折疊,具體操作過程如下:第一步:先把矩形ABCD對折,折痕為MN,如圖(1);第二步:再把B點疊在折痕線MN上,折痕為AE,點B在MN上的對應(yīng)點為,得Rt△,如圖(2);第三步:沿線折疊得折痕EF,如圖(3).利用展開圖(4)探究:

(1)△AEF是什么三角形?證明你的結(jié)論;

(2)對于任一矩形,按照上述方法是否都能折出這種三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年浙江杭州翠苑中學(xué)九年級上學(xué)期10月質(zhì)量檢測數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,矩形ABCD為一本書,AB=12π,AD=2,當(dāng)把書卷起時大致如圖所示的半圓狀(每張紙都是以O(shè)為圓心的同心圓的弧),如第一張紙AB對應(yīng)為,最后一張紙CD對應(yīng)為為半圓),

(1)連結(jié)OB,求鈍角∠AOB=          ;

(2)如果該書共有100張紙,求第40張紙對應(yīng)的弧超出半圓部分的長.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD為一本書,AB=12π,AD=2,當(dāng)把書卷起時大致如圖所示的半圓狀(每張紙都是以O(shè)為圓心的同心圓的弧),如第一張紙AB對應(yīng)為弧AB,最后一張紙CD對應(yīng)為弧CD(CD為半圓),

(1)、連結(jié)OB,求鈍角∠AOB

(2)、如果該書共有100張紙,求第40張紙對應(yīng)的弧超出半圓部分的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD為一本書,AB=12π,AD=2,當(dāng)把書卷起時大致如圖所示的半圓狀(每張紙都是以O(shè)為圓心的同心圓的弧),如第一張紙AB對應(yīng)為,最后一張紙CD對應(yīng)為為半圓),(1)、連結(jié)OB,求鈍角∠AOB=          ;

(2)、如果該書共有100張紙,求第40張紙對應(yīng)的弧超出半圓部分的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD為一本書,AB=12π,AD=2,當(dāng)把書卷起時大致如圖所示的半圓狀(每張紙都是以O(shè)為圓心的同心圓的弧),如第一張紙AB對應(yīng)為弧AB,最后一張紙CD對應(yīng)為弧CD(CD為半圓),

(1)、連結(jié)OB,求鈍角∠AOB

(2)、如果該書共有100張紙,求第40張紙對應(yīng)的弧超出半圓部分的長。

查看答案和解析>>

同步練習(xí)冊答案