在△ABC中,AD平分∠BAC,E是BC上一點,BE=CD,EF∥AD交AB于F點,交CA的延長線于P,CH∥AB交AD的延長線于點H,
①求證:△APF是等腰三角形;  
②猜想AB與PC的大小有什么關系?證明你的猜想.

①證明:∵EF∥AD,
∴∠1=∠4,∠2=∠P,
∵AD平分∠BAC,
∴∠1=∠2,
∴∠4=∠P,
∴AF=AP,
即△APF是等腰三角形;

②AB=PC.理由如下:
證明:∵CH∥AB,
∴∠5=∠B,∠H=∠1,
∵EF∥AD,
∴∠1=∠3,
∴∠H=∠3,
在△BEF和△CDH中,
,
∴△BEF≌△CDH(AAS),
∴BF=CH,
∵AD平分∠BAC,
∴∠1=∠2,
∴∠2=∠H,
∴AC=CH,
∴AC=BF,
∵AB=AF+BF,PC=AP+AC,
∴AB=PC.
分析:①根據(jù)題意作出圖形,根據(jù)兩直線平行,內(nèi)錯角相等可得∠1=∠4,同位角相等可得∠2=∠P,再根據(jù)角平分線的定義可得∠1=∠2,然后求出∠4=∠P,根據(jù)等角對等邊的性質(zhì)即可得證;
②根據(jù)兩直線平行,內(nèi)錯角相等可得∠5=∠B,再求出∠H=∠1=∠3,然后利用“AAS”證明△BEF和△CDH全等,根據(jù)全等三角形對應邊相等可得BF=CH,再求出AC=CH,再根據(jù)AB=AF+BF,PC=AP+AC,整理即可得解.
點評:本題考查了等腰三角形的判定,全等三角形的判定與性質(zhì),以及平行線的性質(zhì),題目較為復雜,熟記性質(zhì)與判定是解題的關鍵,作出圖形更形象直觀.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

16、如圖,在△ABC中,AD是△ABC中∠CAB的角平分錢,要使△ADC≌△ADE,需要添加一個條件,這個條件是
AC=AE或∠ADC=∠ADE或∠ACD=∠AED

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•開平區(qū)一模)如圖,△ABC中,AB>AC,AD平分∠BAC,且交BC于點D,在AB上截取AE=AC,過點E作EF∥BC交AD于點F.
(1)求證:①△ADE≌△ADC; ②四邊形CDEF是菱形.
(2)求證:△ACF∽△ABD;
(3)請你以線段AE為直徑作圓(只保留作圖痕跡,不寫作法),若所作的圓交DF于點H,小明認為點H是線段DF的中點.你同意他的觀點嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,將∠A折疊壓平,使點A落在BC上,則∠1,∠2,∠A三者之間的等量關系為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

觀察與發(fā)現(xiàn):
(1)小明將三角形紙片ABC(AB>AC)沿過點A的直線折疊,使得AC落在AB邊上,折痕為AD,展開紙片(如圖①);再次折疊該三角形紙片,使點A和點D重合,折痕為EF,展平紙片后得到△AEF(如圖②).你認為△AEF是什么形狀的三角形?為什么?
精英家教網(wǎng)
實踐與運用:
如圖,將矩形紙片ABCD按如下順序進行折疊:對折、展平,得折痕EF(如圖①);沿GC折疊,使點B落在EF上的點B′處(如圖②);展平,得折痕GC(如圖③);沿GH折疊,使點C落在DH上的點C′處(如圖④);沿GC′折疊(如圖⑤);展平,得折痕GC′、GH(如圖⑥).
(2)在圖②中連接BB′,判斷△BCB′的形狀,請說明理由;
(3)圖⑥中的△GCC′是等邊三角形嗎?請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:期末題 題型:填空題

如圖,在Rt △ABC 中,∠C=90 °,∠B=30 °,AD 平∠CAB交BC于D,DE⊥AB于E.若DE=1cm,則BC =(    ) cm.

查看答案和解析>>

同步練習冊答案