【題目】(1)(教材呈現(xiàn))下圖是華師版九年級上冊數(shù)學(xué)教材第77頁的部分內(nèi)容.請根據(jù)教材提示,結(jié)合圖23.4.2,寫出完整的證明過程.
(2)(結(jié)論應(yīng)用)如圖,△ABC是等邊三角形,點(diǎn)D在邊AB上(點(diǎn)D與點(diǎn)A、B不重合),過點(diǎn)D作DE∥BC交AC于點(diǎn)E,連結(jié)BE,M、N、P分別為DE、BE、BC的中點(diǎn),順次連結(jié)M、N、P.
①求證:MN=PN;
②∠MNP的大小是.
【答案】(1)見詳解;(2)①見詳解;②120°
【解析】
教材呈現(xiàn):證明△ADE∽△ABC即可解決問題.
結(jié)論應(yīng)用:(1)首先證明△ADE是等邊三角形,推出AD=AE,BD=CE,再利用三角形的中位線定理即可證明.
(2)利用三角形的中位線定理以及平行線的性質(zhì)解決問題即可.
教材呈現(xiàn):證明:∵點(diǎn)D,E分別是AB,AC的中點(diǎn),
∴,
∵∠A=∠A,
∴△ADE∽△ABC,
∴∠ADE=∠ABC,,
∴DE∥BC,DE=BC.
結(jié)論應(yīng)用:
(1)證明:∵△ABC是等邊三角形,
∴AB=AC,∠ABC=∠ACB=60°,
∵DE∥AB,
∴∠ABC=∠ADE=60°,∠ACB=∠AED=60°,
∴∠ADE=∠AED=60°,
∴△ADE是等邊三角形,
∴AD=AE,
∴BD=CE,
∵EM=MD,EN=NB,
∴MN=BD,
∵BN=NE,BP=PC,
∴PN=EC,
∴NM=NP.
(2)∵EM=MD,EN=NB,
∴MN∥BD,
∵BN=NE,BP=PC,
∴PN∥EC,
∴∠MNE∠ABE,∠PNE=∠AEB,
∵∠AEB=∠EBC+∠C,∠ABC=∠C=60°,
∴∠MNP=∠ABE+∠EBC+∠C=∠ABC+∠C=120°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校有3000名學(xué)生.為了解全校學(xué)生的上學(xué)方式,該校數(shù)學(xué)興趣小組以問卷調(diào)查的形式,隨機(jī)調(diào)查了該校部分學(xué)生的主要上學(xué)方式(參與問卷調(diào)查的學(xué)生只能從以下六個種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.
種類 | A | B | C | D | E | F |
上學(xué)方式 | 電動車 | 私家車 | 公共交通 | 自行車 | 步行 | 其他 |
某校部分學(xué)生主要上學(xué)方式扇形統(tǒng)計(jì)圖某校部分學(xué)生主要上學(xué)方式條形統(tǒng)計(jì)圖
根據(jù)以上信息,回答下列問題:
(1)參與本次問卷調(diào)查的學(xué)生共有____人,其中選擇B類的人數(shù)有____人.
(2)在扇形統(tǒng)計(jì)圖中,求E類對應(yīng)的扇形圓心角α的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖.
(3)若將A、C、D、E這四類上學(xué)方式視為“綠色出行”,請估計(jì)該校每天“綠色出行”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在網(wǎng)格紙中,、都是格點(diǎn),以為圓心,為半徑作圓,用無刻度的直尺完成以下畫圖:(不寫畫法)
(1)在圓①中畫圓的一個內(nèi)接正六邊形;
(2)在圖②中畫圓的一個內(nèi)接正八邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=-x2+bx+c的頂點(diǎn)為Q,與x軸交于A(-1,0)、B(5,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的解析式及其頂點(diǎn)Q的坐標(biāo);
(2)在該拋物線的對稱軸上求一點(diǎn)P,使得△PAC的周長最小,請?jiān)趫D中畫出點(diǎn)P的位置,并求點(diǎn)P的坐標(biāo);
(3)如圖2,若點(diǎn)D是第一象限拋物線上的一個動點(diǎn),過D作DE⊥x軸,垂足為E.
①有一個同學(xué)說:“在第一象限拋物線上的所有點(diǎn)中,拋物線的頂點(diǎn)Q與x軸相距最遠(yuǎn),所以當(dāng)點(diǎn)D運(yùn)動至點(diǎn)Q時,折線D-E-O的長度最長”,這個同學(xué)的說法正確嗎?請說明理由.
②若DE與直線BC交于點(diǎn)F.試探究:四邊形DCEB能否為平行四邊形?若能,請直接寫出點(diǎn)D的坐標(biāo);若不能,請簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某化工車間發(fā)生有害氣體泄漏,自泄漏開始到完全控制利用了40min,之后將對泄漏有害氣體進(jìn)行清理,線段DE表示氣體泄漏時車間內(nèi)危險(xiǎn)檢測表顯示數(shù)據(jù)y與時間x(min)之間的函數(shù)關(guān)系(0≤x≤40),反比例函數(shù)y=對應(yīng)曲線EF表示氣體泄漏控制之后車間危險(xiǎn)檢測表顯示數(shù)據(jù)y與時間x(min)之間的函數(shù)關(guān)系(40≤x≤?).根據(jù)圖象解答下列問題:
(1)危險(xiǎn)檢測表在氣體泄漏之初顯示的數(shù)據(jù)是 ;
(2)求反比例函數(shù)y=的表達(dá)式,并確定車間內(nèi)危險(xiǎn)檢測表恢復(fù)到氣體泄漏之初數(shù)據(jù)時對應(yīng)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2+2x﹣3圖象的頂點(diǎn)為D,與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)當(dāng)﹣2<x<2時,y的取值范圍是 ;
(3)判定△ACD的形狀為 三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,點(diǎn)、為邊和上的動點(diǎn)(不含端點(diǎn)),.下列三個結(jié)論:①當(dāng)時,則;②;③的周長不變,其中正確結(jié)論的個數(shù)是( )
A.0B.1
C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的布袋里裝有4個標(biāo)有1,2,3,4的小球,它們的形狀、大小完全相同,小明從布袋里隨機(jī)取出一個小球,記下數(shù)字為,小紅在剩下的3個小球中隨機(jī)取出一個小球,記下數(shù)字為。
(1)計(jì)算由、確定的點(diǎn)在函數(shù)的圖象上的概率;
(2)小明和小紅約定做一個游戲,其規(guī)則為:若、滿足>6則小明勝,若、滿足<6則小紅勝,這個游戲公平嗎?說明理由.若不公平,請寫出公平的游戲規(guī)則.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC三個頂點(diǎn)的坐標(biāo)分別為A(﹣5,1),B(﹣1,5),C(﹣2,2),將△ABC繞原點(diǎn)順時針旋轉(zhuǎn)90°得△A1B1C1,△A1B1C1與△A2B2C2關(guān)于x軸對稱.
(1)畫出△A1B1C1和△A2B2C2;
(2)sin∠CAB= ;
(3)△ABC與△A2B2C2組成的圖形是否是軸對稱圖形?若是軸對稱圖形,請直接寫出對稱軸所在的直線解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com