【題目】如圖,將長(zhǎng)方形ABCD沿對(duì)角線BD折疊,點(diǎn)C落在點(diǎn)E處,BEAD于點(diǎn)F,已知∠BDC=62°,則∠DFE的度數(shù)為(

A. 62°B. 56°C. 31°D. 28°

【答案】B

【解析】

先利用互余計(jì)算出∠FDB=28°,再根據(jù)平行線的性質(zhì)得∠CBD=FDB=28°,接著根據(jù)折疊的性質(zhì)得∠FBD=CBD=28°,然后利用三角形外角性質(zhì)計(jì)算∠DFE的度數(shù)

∵四邊形ABCD為矩形,

ADBC,ADC=90°,

∵∠FDB=90°BDC=90°62°=28°,

ADBC,

∴∠CBD=FDB=28°

∵矩形ABCD沿對(duì)角線BD折疊,

∴∠FBD=CBD=28°

∴∠DFE=FBD+FDB=28°+28°=56°.

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,BC=DC,ACBD相交于點(diǎn)O,則①CA平分∠BCD;②ACBD;③∠ABC=ADC=90°;④四邊形ABCD的面積為ACBD.上述結(jié)論正確的個(gè)數(shù)是( 。

A. 1個(gè)

B. 2個(gè)

C. 3個(gè)

D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長(zhǎng)方形ABCD中,AB6厘米,AD8厘米.延長(zhǎng)BC到點(diǎn)E,使CE3厘米,連接DE.動(dòng)點(diǎn)PB點(diǎn)出發(fā),以2厘米/秒的速度向終點(diǎn)C勻速運(yùn)動(dòng),連接DP.設(shè)運(yùn)動(dòng)時(shí)間為t秒,解答下列問題:

(1)當(dāng)t為何值時(shí),△PCD為等腰直角三角形?

(2)設(shè)△PCD的面積為S(平方厘米),試確定St的關(guān)系式;

(3)當(dāng)t為何值時(shí),△PCD的面積為長(zhǎng)方形ABCD面積的?

(4)若動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以2厘米/秒的速度沿BCCDDA向終點(diǎn)A運(yùn)動(dòng),是否存在某一時(shí)刻t,使△ABP和△DCE全等?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店將進(jìn)價(jià)為8元的商品按每件10元售出,每天可售出200件,現(xiàn)在采取提高商品售價(jià)減少銷售量的辦法增加利潤(rùn),如果這種商品每件的銷售價(jià)每提高0.5元其銷售量就減少10件,

1)問應(yīng)將每件售價(jià)定為多少元時(shí),才能使每天利潤(rùn)為640元且成本最少?

2)問應(yīng)將每件售價(jià)定為多少元時(shí),才能使每天利潤(rùn)最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BC=4M、N在對(duì)角線AC上,且AM=CN,E、F分別是AD、BC的中點(diǎn).

1)求證:△ABM≌△CDN

2)點(diǎn)G是對(duì)角線AC上的點(diǎn),∠EGF=90°,求AG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】填空并完成以下證明:

已知:點(diǎn)P在直線CD上,∠BAP+∠APD=180°,∠1=∠2.

求證:AB∥CD,∠E=∠F.

證明:∵∠BAP+∠APD=180°,(已知)

∴AB∥   .(   

∴∠BAP=   .(   

∵∠1=∠2,(已知)

∠3=   ﹣∠1,

∠4=   ﹣∠2,

∴∠3=   (等式的性質(zhì))

∴AE∥PF.(   

∴∠E=∠F.(   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,垂足為,直線上一動(dòng)點(diǎn)(不與點(diǎn)重合),在的右側(cè)作,使得,連接

1)求證:;

2)當(dāng)在線段上時(shí)

求證:

, ;

3)當(dāng)CEAB時(shí),若△ABD中最小角為20°,試探究∠ADB的度數(shù)(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖中是圓弧形拱橋,某天測(cè)得水面,此時(shí)圓弧最高點(diǎn)距水面

)確定圓弧所在圓的圓心.(尺規(guī)作圖,保留作圖痕跡)

)求圓弧所在圓的半徑.

)水面上升,水面寬__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,在一塊寬為12m,長(zhǎng)為20m的矩形地面上修筑同樣寬的道路,余下的部分種上草坪.要使草坪的面積為180m2,求道路的寬;

(2)現(xiàn)在對(duì)該矩形區(qū)域進(jìn)行改造,如圖2,在正中央建一個(gè)與矩形的邊互相平行的正方形觀賞亭,觀賞亭的四邊連接四條與矩形的邊互相平行的且寬度相等的道路,已知道路的寬為正方形邊長(zhǎng)的若道路與觀賞亭的面積之和是矩形面積的,求道路的寬

查看答案和解析>>

同步練習(xí)冊(cè)答案