已知:A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+1

(1)當a=﹣1,b=2時,求4A﹣(3A﹣2B)的值;

(2)若(1)中的代數(shù)式的值與a的取值無關,求b的值.


解:(1)∵A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+1,

∴原式=4A﹣3A+2B=A+2B=5ab﹣2a+1,

當a=﹣1,b=2時,原式=﹣7;

(2)原式=5ab﹣2a+1=(5b﹣2)a+1,

由結果與a的取值無關,得到b=


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:


﹣(﹣18)+12﹣15+(﹣17)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


在計算3+5+7+9+11+13的值時,小明直接計算出結果為48,愛動腦筋的小紅,發(fā)現(xiàn)這6個數(shù)據(jù)的特點后,用的方法來計算,也得出同樣的結果.

請用上面小紅的發(fā)現(xiàn)解答下面問題:

某公司對外出租一商鋪,符合條件的兩商戶A、B分別擬定上繳利潤方案如下:

A:每年結算一次上繳房租,第一年上繳1.5萬元,以后每年比前一年增加1萬元;

B:每半年結算一次上繳房租,第一個半年上繳0.3萬元,以后每半年比前半年增加0.3萬元;

(1)如果承租期限3年,則A商戶上繳房租的總金額為__________萬元,B商戶上繳房租的總金額為__________萬元;

(2)如果承租期限為n年,分別求A、B兩商戶上繳房租的總金額;(用含n的代數(shù)式表示)

(3)如果承租期限n=20時,那么哪個商戶上繳房租的總金額比較多?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


當k=__________時,多項式x2+(k﹣1)xy﹣3y2﹣2xy﹣5中不含xy項.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


9×(﹣46)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


.A、B兩倉庫分別有水泥20噸和30噸,C、D兩工地分別需要水泥15噸和35噸.已知從A、B倉庫到C、D工地的運價如下表:

到C工地

到D工地

A倉庫

每噸15元

每噸12元

B倉庫

每噸10元

每噸9元

(1)若從A倉庫運到C工地的水泥為x噸,則用含x的代數(shù)式表示從A倉庫運到D工地的水泥為__________噸,從B倉庫將水泥運到D工地的運輸費用為__________元;

(2)求把全部水泥從A、B兩倉庫運到C、D兩工地的總運輸費(用含x的代數(shù)式表示并化簡);

(3)如果從A倉庫運到C工地的水泥為10噸時,那么總運輸費為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


一動點沿著數(shù)軸向右平移3個單位,再向左平移2個單位,相當于向右平移1個單位.用實數(shù)加法表示為3+(-2)=1.

若坐標平面上的點作如下平移:沿x軸方向平移的數(shù)量為a(向右為正,向左為負,平移|a|個單位),沿y軸方向平移的數(shù)量為b(向上為正,向下為負,平移|b|個單位),則把有序數(shù)對{a,b}叫做這一平移的“平移量”;“平移量”{a,b}與“平移量”{c,d}的加法運算法則為{a,b}+{c,d}={a+c,b+d}.

解決問題:

(1)計算:{3,1}+{1,2};{1,2}+{3,1};

(2)動點P從坐標原點O出發(fā),先按照“平移量”{3,1}平移到A,再按照“平移量”{1,2}平移到B;若先把動點P按照“平移量”{1,2}平移到C,再按照“平移量”{3,1}平移,最后的位置還是點B嗎?在圖(1)中畫出四邊形OABC;

(3)如圖(2),一艘船從碼頭O出發(fā),先航行到湖心島碼頭P(2,3),再從碼頭P航行到碼頭Q(5,5),最后回到出發(fā)點O.請用“平移量”加法算式表示它的航行過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


蓮花山公園管理處計劃購買甲、乙兩種花木共6000株,甲種花木每株0.5元,乙種花木每株0.8元.相關資料表明:甲、乙兩種花木的成活率分別為90%和95%.

(1)若購買這批花木共用了3600元,求甲、乙兩種花木各購買了多少株?

(2)若要使這批花木的成活率不低于93%,且購買花木的總費用最低,應如何選購花木?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


查看答案和解析>>

同步練習冊答案