【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為H,連結(jié)AC,過弧BD上一點E作EG∥AC交CD的延長線于點G,連結(jié)AE交CD于點F,且EG=FG,連結(jié)CE.
(1)求證:△ECF∽△GCE;
(2)求證:EG是⊙O的切線;
(3)延長AB交GE的延長線于點M,若tan∠G=,AH=3,求EM的值.
【答案】(1)證明見解析;(2)證明見解析;(3).
【解析】
(1)根據(jù)平行線的性質(zhì)可得∠G=∠ACG,再根據(jù)圓周角定理可得∠CEF=∠ACG,即∠G=∠CEF,然后根據(jù)三角形相似的判定即可得證;
(2)連接OE,根據(jù)等腰三角形的性質(zhì)可得∠GFE=∠GEF=∠AFH,∠OAE=∠OEA,根據(jù)題意可得∠AFH+∠FAH=90°,即∠GEF+∠AEO=90°,然后切線的判定即可得證;
(3)如圖3中,連接OC,設(shè)⊙O的半徑為r,在Rt△AHC中,利用三角形函數(shù)求得HC=4,在Rt△HOC中,利用勾股定理列出關(guān)于r的方程,求解方程得到r=,然后根據(jù)平行線的性質(zhì)得到∠CAH=∠M,進而證明△AHC∽△MEO,再利用相似三角形的性質(zhì)求解即可.
(1)證明:如圖1中,
∵AC∥EG,
∴∠G=∠ACG,
∵AB⊥CD,
∴=,
∴∠CEF=∠ACG,
∴∠G=∠CEF,
∵∠ECF=∠ECG,
∴△ECF∽△GCE.
(2)證明:如圖2中,連接OE,
∵GF=GE,
∴∠GFE=∠GEF=∠AFH,
∵OA=OE,
∴∠OAE=∠OEA,
∵∠AFH+∠FAH=90°,
∴∠GEF+∠AEO=90°,
∴∠GEO=90°,
∴GE⊥OE,
∴EG是⊙O的切線.
(3)解:如圖3中,連接OC,設(shè)⊙O的半徑為r,
在Rt△AHC中,tan∠ACH=tan∠G═,
∵AH=3,
∴HC=4,
在Rt△HOC中,∵OC=r,OH=r﹣3,HC=4,
∴(r﹣3)2+42=r2,
∴r=
∵GM∥AC,
∴∠CAH=∠M,
∵∠OEM=∠AHC,
∴△AHC∽△MEO,
∴,
∴,
解得:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們把一個半圓與拋物線的一部分合成的封閉圖形稱為“蛋圓”,如果一條直線與“蛋圓”只有一個交點,那么這條直線叫做“蛋圓”的切線。如圖,點A、B、C、D分別是“蛋圓”與坐標軸的交點,點D的坐標為(0,-3)AB為半圓直徑,半圓圓心M(1,0),半徑為2,則經(jīng)過點D的“蛋圓”的切線的解析式為__________________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD中,將邊AB所在直線繞點A逆時針旋轉(zhuǎn)一個角度α得到直線AM,過點C作CE⊥AM,垂足為E,連接BE.
(1)當(dāng)0°<α<45°時,設(shè)AM交BC于點F,
①如圖1,若α=35°,則∠BCE= °;
②如圖2,用等式表示線段AE,BE,CE之間的數(shù)量關(guān)系,并證明;
(2)當(dāng)45°<α<90°時(如圖3),請直接用等式表示線段AE,BE,CE之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).
(1)請畫出△ABC繞O點逆時針旋轉(zhuǎn)90°得到△A1B1C1,請畫出△A1B1C1.
(2)在x軸上求作一點P,使△PA1C1的周長最小,并直接寫出P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,可以自由轉(zhuǎn)動的轉(zhuǎn)盤被它的兩條直徑分成了四個分別標有數(shù)字的扇形區(qū)域,其中標有數(shù)字“1”的扇形圓心角為120°.轉(zhuǎn)動轉(zhuǎn)盤,待轉(zhuǎn)盤自動停止后,指針指向一個扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時,稱為轉(zhuǎn)動轉(zhuǎn)盤一次(若指針指向兩個扇形的交線,則不計轉(zhuǎn)動的次數(shù),重新轉(zhuǎn)動轉(zhuǎn)盤,直到指針指向一個扇形的內(nèi)部為止)
(1)轉(zhuǎn)動轉(zhuǎn)盤一次,求轉(zhuǎn)出的數(shù)字是-2的概率;
(2)轉(zhuǎn)動轉(zhuǎn)盤兩次,用樹狀圖或列表法求這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)社團成員想利用所學(xué)的知識測量某廣告牌的寬度圖中線段MN的長,直線MN垂直于地面,垂足為點在地面A處測得點M的仰角為、點N的仰角為,在B處測得點M的仰角為,米,且A、B、P三點在一直線上請根據(jù)以上數(shù)據(jù)求廣告牌的寬MN的長.
參考數(shù)據(jù):,,,,,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=﹣x+3分別交x軸、y軸于點A、B,P是拋物線y=﹣x2+2x+5上的一個動點,其橫坐標為a,過點P且平行于y軸的直線交直線y=﹣x+3于點Q,則當(dāng)PQ=BQ時,a的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,O是邊AC上一點,以O為圓心,以OA為半徑的圓分別交AB、AC于點E、D,在BC的延長線上取點F,使得BF=EF.
(1)判斷直線EF與⊙O的位置關(guān)系,并說明理由;
(2)若∠A=30°,求證:DG=DA;
(3)若∠A=30°,且圖中陰影部分的面積等于2,求⊙O的半徑的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過一次函數(shù)y=-x+3的圖象與x軸、y軸的交點,并且也經(jīng)過(1,1)點,求這個二次函數(shù)的關(guān)系式,并求x為何值時,函數(shù)有最大(最小)值?這個值是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com