如圖,n+1個(gè)上底、兩腰長(zhǎng)皆為1,下底長(zhǎng)為2的等腰梯形的下底均在同一直線上,設(shè)四邊形P1M1N1N2面積為S1,四邊形P2M2N2N3的面積為S2,…,四邊形PnMnNnNn+1的面積為Sn,通過(guò)逐一計(jì)算S1,S2,…,可得Sn=   
【答案】分析:先求出一個(gè)小梯形的高和面積,再根據(jù)相似三角形對(duì)應(yīng)高的比等于對(duì)應(yīng)邊的比求出四邊形PnMnNnNn+1上方的小三角形的高,然后用小梯形的面積減上方的小三角形的面積即可.
解答:解:如圖,根據(jù)題意,小梯形中,
過(guò)D作DE∥BC交AB于E,
∵上底、兩腰長(zhǎng)皆為1,下底長(zhǎng)為2,
∴AE=2-1=1,
∴△AED是等邊三角形,
∴高h(yuǎn)=1×sin60°=
S梯形=×(1+2)×=,
設(shè)四邊形PnMnNnNn+1的上方的小三角形的高為x,
根據(jù)小三角形與△AMnNn相似,ANn=2n,
由相似三角形對(duì)應(yīng)邊上高的比等于相似比,可知,
解得x==,
∴Sn=S梯形-×1×,
=-
點(diǎn)評(píng):解答本題關(guān)鍵在于看出四邊形PnMnNnNn+1的面積等于一個(gè)小梯形的面積減掉它上方的小三角形的面積,而小三角形的面積可以利用相似三角形的性質(zhì)求出,此題也就解決了.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,n+1個(gè)上底、兩腰長(zhǎng)皆為1,下底長(zhǎng)為2的等腰梯形的下底均在同一直線上,設(shè)四邊形P1M1N1N2面積為S1,四邊形P2M2N2N3的面積為S2,…,四邊形PnMnNnNn+1的面積為Sn,通過(guò)逐一計(jì)算S1,S2,…,可得Sn=
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,n+1個(gè)上底、兩腰長(zhǎng)皆為1,下底長(zhǎng)為2的等腰梯形的下底均在同一直線上,設(shè)四邊形P1M1N1N2面積為S1,四邊形P2M2N2N3的面積為S2,…,四邊形PnMnNnNn+1的面積記為Sn,通過(guò)逐一計(jì)算S1,S2,…,可得Sn=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年初中數(shù)學(xué)單元提優(yōu)測(cè)試卷-相似的判定填空題(帶解析) 題型:填空題

如圖,n+1個(gè)上底、兩腰長(zhǎng)皆為1,下底長(zhǎng)為2的等腰梯形的下底均在同一直線上,設(shè)四邊形P1M1N1N2面積為S1,四邊形P2M2N2N3的面積為S2,…,四邊形PnMnNnNn+1的面積為Sn,通過(guò)逐一計(jì)算S1,S2,…,可得Sn=           

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年初中數(shù)學(xué)單元提優(yōu)測(cè)試卷-相似的判定填空題(解析版) 題型:填空題

如圖,n+1個(gè)上底、兩腰長(zhǎng)皆為1,下底長(zhǎng)為2的等腰梯形的下底均在同一直線上,設(shè)四邊形P1M1N1N2面積為S1,四邊形P2M2N2N3的面積為S2,…,四邊形PnMnNnNn+1的面積為Sn,通過(guò)逐一計(jì)算S1,S2,…,可得Sn=           

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建莆田秀嶼區(qū)實(shí)驗(yàn)中學(xué)中考模擬數(shù)學(xué)試卷 題型:填空題

如圖,n+1個(gè)上底、兩腰長(zhǎng)皆為1,下底長(zhǎng)為2的等腰梯形的下底均在同一直線上,設(shè)四邊形P1M1N1N2面積為S1,四邊形P2M2N2N3的面積為S2,……,四邊形PnMnNnNn+1的面積記為Sn,則Sn=              

 

查看答案和解析>>

同步練習(xí)冊(cè)答案