【題目】如圖,正方形ABCD的邊長為2,.BBE//AC.

(1)BEAC之間的距離;

(2)FBE上一點,連接AF,過CCG//AFBEG.若∠FAB=15°,

①依題意補(bǔ)全圖形;

②求證:四邊形AFGC是菱形.

【答案】1;(2)①見解析;②見解析.

【解析】

1)連結(jié)BDACO點,如圖,利用正方形的性質(zhì)得到ACBD,BO,由于BEAC,于是可判斷BEAC之間的距離為;

2)①根據(jù)幾何語言畫出對應(yīng)圖形;

②設(shè)OBAF交于點H,先證明四邊形AFGC是平行四邊形,再計算出AHHF,從而得到AFAHHF2AC,于是可判斷四邊形AFGC是菱形.

解:(1)連結(jié)BDACO點,如圖,

∵四邊形ABCD為正方形,

ACBD,BOBD×2,

BEAC

OBBE,

BEAC之間的距離為,

故答案為:;

2)①如圖,四邊形AFGC為所作;

②設(shè)OBAF交于點H

CGAF,ACFG,

∴四邊形AFGC是平行四邊形,

∵四邊形ABCD為正方形,

OAOBAC2,∠AOB90°,∠OAB45°,

∵∠FAB15°,

∴∠OAF30°

RtOAH中,OHOA,AH2OH,

BHOH

ACBE,

∴∠BFA=∠OAF30°

HF2BH2)=2,

AFAHHF22,

ACAF,

∴四邊形AFGC是菱形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是一組有規(guī)律的圖案,第①個圖集中有4個三角形,第②個圖案中有7個三角形,第③個圖案中有10個三角形,……依此規(guī)律,第⑦個圖案中有______個三角形,第n個圖案中有______個三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】出租車司機(jī)小張某天上午營運全是在東西走向的政府大道上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天上午的行程是(單位千米)+15,-3,+16,-11,+10,-12,+4,-15,+16,-18

(1)將最后一名乘客送達(dá)目的地時,小張距上午出發(fā)點的距離是多少千米?在出發(fā)點的什么方向?

(2)若汽車耗油量為06升/千米,出車時,郵箱有油722升,若小張將最后一名乘客送達(dá)目的地,再返回出發(fā)地,問小張今天上午是否需要加油?若要加油至少需要加多少才能返回出發(fā)地?若不用加油,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某軟件科技公司20人負(fù)責(zé)研發(fā)與維護(hù)游戲、網(wǎng)購、視頻和送餐共4款軟件.投入市場后,游戲軟件的利潤占這4款軟件總利潤的40%.如圖是這4款軟件研發(fā)與維護(hù)人數(shù)的扇形統(tǒng)計圖和利潤的條形統(tǒng)計圖.

根據(jù)以上信息,網(wǎng)答下列問題

(1)直接寫出圖中a,m的值;

(2)分別求網(wǎng)購與視頻軟件的人均利潤;

(3)在總?cè)藬?shù)和各款軟件人均利潤都保持不變的情況下,能否只調(diào)整網(wǎng)購與視頻軟件的研發(fā)與維護(hù)人數(shù),使總利潤增加60萬元?如果能,寫出調(diào)整方案;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對給定的一張矩形紙片ABCD進(jìn)行如下操作:先沿CE折疊,使點B落在CD邊上(如圖①),再沿CH折疊,這時發(fā)現(xiàn)點E恰好與點D重合(如圖②

(1)根據(jù)以上操作和發(fā)現(xiàn),求的值;

(2)將該矩形紙片展開.

①如圖③,折疊該矩形紙片,使點C與點H重合,折痕與AB相交于點P,再將該矩形紙片展開.求證:∠HPC=90°;

②不借助工具,利用圖④探索一種新的折疊方法,找出與圖③中位置相同的P點,要求只有一條折痕,且點P在折痕上,請簡要說明折疊方法.(不需說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC是等邊三角形,DAC的中點,FAB邊上一點,AF=2BF,E為射線BC上一點,EDF=120°,=____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】出租車司機(jī)小張某天上午營運全是在東西走向的政府大道上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天上午的行程是(單位千米)+15,-3,+16,-11,+10,-12,+4,-15,+16,-18

(1)將最后一名乘客送達(dá)目的地時,小張距上午出發(fā)點的距離是多少千米?在出發(fā)點的什么方向?

(2)若汽車耗油量為06升/千米,出車時,郵箱有油722升,若小張將最后一名乘客送達(dá)目的地,再返回出發(fā)地,問小張今天上午是否需要加油?若要加油至少需要加多少才能返回出發(fā)地?若不用加油,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系xOy中,已知ABC,ABC=90°,頂點A在第一象限,B,Cx軸的正半軸上(CB的右側(cè)),BC=2,AB=2,ADCABC關(guān)于AC所在的直線對稱.

(1)當(dāng)OB=2時,求點D的坐標(biāo);

(2)若點A和點D在同一個反比例函數(shù)的圖象上,求OB的長;

(3)如圖2,將第(2)題中的四邊形ABCD向右平移,記平移后的四邊形為A1B1C1D1,過點D1的反比例函數(shù)y=(k≠0)的圖象與BA的延長線交于點P.問:在平移過程中,是否存在這樣的k,使得以點P,A1,D為頂點的三角形是直角三角形?若存在,請直接寫出所有符合題意的k的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】紅星中學(xué)九年級(1)班三位教師決定帶領(lǐng)本班名學(xué)生利用假期去某地旅游,楓江旅行社的收費標(biāo)準(zhǔn)為:教師全價,學(xué)生半價;而東方旅行社不管教師還是學(xué)生一律八折優(yōu)惠,這兩家旅行社的全價都是500元。

(1)用含的式子表示三位教師和位學(xué)生參加這兩家旅行社所需的費用各是多少元;

(2)如果=50時,請你計算選擇哪一家旅行社較為合算?

查看答案和解析>>

同步練習(xí)冊答案