【題目】如圖,已知線段與點(diǎn),若在線段上存在點(diǎn),滿足,則稱點(diǎn)為線段限距點(diǎn)”.

1)如圖,在平面直角坐標(biāo)系中,若點(diǎn).

①在中,是線段限距點(diǎn)的是 ;

②點(diǎn)是直線上一點(diǎn),若點(diǎn)是線段限距點(diǎn),請(qǐng)求出點(diǎn)橫坐標(biāo)的取值范圍.

2)在平面直角坐標(biāo)系中,點(diǎn),直線軸交于點(diǎn),與軸交于點(diǎn). 上存在線段限距點(diǎn),請(qǐng)求出的取值范圍.

【答案】1)①;②;(2.

【解析】

1)①已知AB=2,根據(jù)勾股定理,結(jié)合兩點(diǎn)之間的距離公式,即可得到答案;

②根據(jù)題意,作出“限距點(diǎn)”的軌跡,結(jié)合圖形,即可得到答案;

(2)結(jié)合(1)的軌跡,作出圖像,可分為兩種情況進(jìn)行分析,分別求出兩個(gè)臨界點(diǎn),即可求出t的取值范圍.

1)①根據(jù)題意,如圖:

∵點(diǎn),

AB=2

∵點(diǎn)C為(0,2),點(diǎn)O0,0)在AB上,

OC=AB=2;

E,點(diǎn)O0,0)在AB上,

OE=;

∵點(diǎn)D)到點(diǎn)A的距離最短,為

∴線段的“限距點(diǎn)”的是點(diǎn)C、E

故答案為:C、E.

②由題意直線上滿足線段限距點(diǎn)的范圍,如圖所示.

∴點(diǎn)在線段上(包括端點(diǎn)),

AM=AB=2,

設(shè)點(diǎn)M的坐標(biāo)為:(nn)(n<0),

,

,

,

易知

點(diǎn)橫坐標(biāo)的取值范圍為:.

2)∵x軸交于點(diǎn)M,與y軸交于點(diǎn)N,

∴令y=0,得;令x=0,得

∴點(diǎn)M為:(),點(diǎn)N為:(0);

如圖所示,

此時(shí)點(diǎn)M到線段AB的距離為2

,

;

如圖所示,AE=AB=2

∵∠EMG=EAF=30°,

,

,,

,

AG=1,

解得:;

綜上所述:的取值范圍為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】O的內(nèi)接正三角形的邊長(zhǎng)記為a3,⊙O的內(nèi)接正方形的邊長(zhǎng)記為a4,則等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】頂角為36°的等腰三角形稱為黃金三角形,利用黃金三角形求的準(zhǔn)確值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=BC,DAC中點(diǎn),BE平分∠ABDAC于點(diǎn)E,點(diǎn)OAB上一點(diǎn),⊙O過(guò)B、E兩點(diǎn),交BD于點(diǎn)G,交AB于點(diǎn)F

1)判斷直線AC⊙O的位置關(guān)系,并說(shuō)明理由;

2)當(dāng)BD=6,AB=10時(shí),求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線與函數(shù)的圖象交于,兩點(diǎn),且點(diǎn)的坐標(biāo)為

1)求的值;

2)已知點(diǎn),過(guò)點(diǎn)作平行于軸的直線,交直線于點(diǎn),交函數(shù)的圖象于點(diǎn)

①當(dāng)時(shí),求線段的長(zhǎng);

②若,結(jié)合函數(shù)的圖象,直接寫(xiě)出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB6,BC3動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AC以每秒4個(gè)單位長(zhǎng)度的速度向終點(diǎn)C運(yùn)動(dòng).過(guò)點(diǎn)P(不與點(diǎn)A、C重合)作EFAC,交ABBC于點(diǎn)E,交ADDC于點(diǎn)F,以EF為邊向右作正方形EFGH設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.

1)①AC   .②當(dāng)點(diǎn)FAD上時(shí),用含t的代數(shù)式直接表示線段PF的長(zhǎng)   

2)當(dāng)點(diǎn)F與點(diǎn)D重合時(shí),求t的值.

3)設(shè)方形EFGH的周長(zhǎng)為l,求lt之間的函數(shù)關(guān)系式.

4)直接寫(xiě)出對(duì)角線AC所在的直線將正方形EFGH分成兩部分圖形的面積比為12時(shí)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以點(diǎn)為圓心畫(huà)圓,與軸交于;兩點(diǎn),與軸交于兩點(diǎn),當(dāng)時(shí),的取值范圍是____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在菱形ABCD中,AB=4,∠BAD=120°,點(diǎn)P是直線AB上任意一點(diǎn),聯(lián)結(jié)PC,在∠PCD內(nèi)部作射線CQ與對(duì)角線BD交于點(diǎn)Q(與B、D不重合),且∠PCQ=30°.

1)如圖,當(dāng)點(diǎn)P在邊AB上時(shí),如果BP=3,求線段PC的長(zhǎng);

2)當(dāng)點(diǎn)P在射線BA上時(shí),設(shè),求y關(guān)于的函數(shù)解析式及定義域;

3)聯(lián)結(jié)PQ,直線PQ與直線BC交于點(diǎn)E,如果相似,求線段BP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,ABC內(nèi)接于,點(diǎn)D的中點(diǎn),且與點(diǎn)C位于AB的異側(cè),CDAB于點(diǎn)E.

1)求證:ADE∽△CDA

2)如圖2,若的直徑AB,CE=2,求ADCD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案