【題目】函數(shù)y= 與y=m﹣x的圖象的一個交點是A(2,3),其中k、m為常數(shù).
(1)求k、m的值,畫出函數(shù)的草圖.
(2)根據(jù)圖象,確定自變量x的取值范圍,使一次函數(shù)的函數(shù)值大于反比例函數(shù)的函數(shù)值.

【答案】
(1)解:把x=2,y=3代入解析式得,k=xy=2×3=6,m=x+y=2+3=5,

則y= ,y=﹣x+5,

草圖如下:


(2)解:由題意得: ,

解得:

∴函數(shù)y= 與y=5﹣x的圖象的另一個交點是B(3,2),

由圖象得:當(dāng)2<x<3時,一次函數(shù)的函數(shù)值大于反比例函數(shù)的函數(shù)值


【解析】(1)把點A的坐標(biāo)代入函數(shù)解析式可得k,m,利用特殊點畫出草圖即可;(2)先列方程組求另一個交點B的坐標(biāo),再根據(jù)圖象交點可得結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小林畫出函數(shù)的一部分圖象,利用圖象回答

(1)自變量x的取值范圍

(2)當(dāng)x取什么值時,y的最小值.最大值各是多少?

(3)在圖中,當(dāng)x增大時,y的值是怎樣變化?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生課余活動情況,某校對參加繪畫、書法、舞蹈、樂器這四個課外興趣小組的人員分布情況進行抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,解答下面的問題:

(1)此次共調(diào)查了多少名同學(xué)?

(2)將條形圖補充完整,并計算扇形統(tǒng)計圖中書法部分的圓心角的度數(shù);

(3)如果該校共有1000名學(xué)生參加這4個課外興趣小組,而每個教師最多只能輔導(dǎo)本組的20名學(xué)生,估計每個興趣小組至少需要準(zhǔn)備多少名教師?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC的三邊長分別為ab,c,下列條件:①∠A=∠B-∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b-c);④abc=5:12:13,其中能判斷△ABC是直角三角形的個數(shù)有( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD是∠BAC的平分線,AD的垂線平分線交AB于點F,交BC的延長線于點E,連接AE,DF.

求證:(1)∠EAD=∠EDA;(2)DF//AC;(3)∠EAC=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD是平行四邊形,以AB為直徑的⊙O經(jīng)過點D,∠DAB=45°.
(1)如圖①,判斷CD與⊙O的位置關(guān)系,并說明理由;
(2)如圖②,E是⊙O上一點,且點E在AB的下方,若⊙O的半徑為3cm,AE=5cm,求點E到AB的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC 中,∠ACB=90° AD 是它的角平分線,EBAB 于點 B 且交 AD 的延長線于點 E.

(1)如圖 1,求證:BD=BE

(2)如圖 2,過點 E EFBC 于點 F, CF:BF=5:3, BE=10, DF 的長.

1 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點D是BC的中點,點F是AD的中點,過點D作DE∥AC,交CF的延長線于點E,連接BE,AE.

(1)求證:四邊形ACDE是平行四邊形;

(2)若AB=AC,試判斷四邊形ADBE的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“富春包子”是揚州特色早點,富春茶社為了了解顧客對各種早點的喜愛情況,設(shè)計了如右圖的調(diào)查問卷,對顧客進行了抽樣調(diào)查.根據(jù)統(tǒng)計數(shù)據(jù)繪制了如下尚不完整的統(tǒng)計圖.

根據(jù)以上信息,解決下列問題:

1)條形統(tǒng)計圖中“湯包”的人數(shù)是 ,扇形統(tǒng)計圖中“蟹黃包”部分的圓心角為 °;

2)根據(jù)抽樣調(diào)查結(jié)果,請你估計富春茶社1000名顧客中喜歡“湯包”的有多少人?

查看答案和解析>>

同步練習(xí)冊答案