【題目】拋物線與x軸交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)),且A,B兩點(diǎn)的坐標(biāo)分別為(-2,0),(8,0),與y軸交于點(diǎn)C(0,-4),連接BC,以BC為一邊,點(diǎn)O為對(duì)稱中心作菱形BDEC,點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)P作x軸的垂線L交拋物線于點(diǎn)Q,交BD于點(diǎn)M.
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)P在線段OB上運(yùn)動(dòng)時(shí),試探究m為何值時(shí),四邊形CQMD是平行四邊形?
(3)位于第四象限內(nèi)的拋物線上是否存在點(diǎn)N,使得△BCN的面積最大?若存在,求出N點(diǎn)的坐標(biāo),及△BCN面積的最大值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1) 拋物線解析式為y=x2-x-4;(2) 當(dāng)m=4時(shí),四邊形CQMD是平行四邊形; (3) S△BCN= 8.
【解析】
(1)用待定系數(shù)法直接求出拋物線解析式;
(2)由菱形的對(duì)稱性可知,點(diǎn)D的坐標(biāo),根據(jù)待定系數(shù)法可求直線BD的解析式,根據(jù)平行四邊形的性質(zhì)可得關(guān)于m的方程,求得m的值;再根據(jù)平行四邊形的判定可得四邊形CQMD的形狀;
(3)先判斷出點(diǎn)N在平行于BC且與拋物線只有一個(gè)交點(diǎn)時(shí)的位置,確定出點(diǎn)N的坐標(biāo),用面積和差求出三角形BCN的面積.
(1)設(shè)拋物線的解析式為y=ax2+bx+c,
根據(jù)題意得,
∴拋物線解析式為y=x2-x-4.
(2)∵C(0,-4),
∴由菱形的對(duì)稱性可知,點(diǎn)D的坐標(biāo)為(0,4).
設(shè)直線BD的解析式為y=kx+b',則解得k=-,b'=4.
∴直線BD的解析式為y=-x+4.
∵l⊥x軸,
∴點(diǎn)M的坐標(biāo)為,點(diǎn)Q的坐標(biāo)為.
如圖,當(dāng)MQ=DC時(shí),四邊形CQMD是平行四邊形,
∴=4-(-4).化簡(jiǎn)得m2-4m=0,解得m1=0(不合題意舍去),m2=4.
∴當(dāng)m=4時(shí),四邊形CQMD是平行四邊形.
(3)存在,理由:
當(dāng)過點(diǎn)N平行于直線BC的直線與拋物線只有一個(gè)交點(diǎn)時(shí),△BCN的面積最大.
∵B(8,0),C(0,-4),
∴BC=4.直線BC解析式為y=x-4,設(shè)過點(diǎn)N平行于直線BC的直線L解析是為y=x+n①,
∵拋物線解析式為y=x2-x-4②,聯(lián)立①②得,x2-8x-4(n+4)=0,③
∴Δ=64+16(n+4)=0,
∴n=-8,
∴直線L解析式為y=x-8,將n=-8代入③中得,x2-8x+16=0
∴x=4,
∴y=-6,
∴N(4,-6),
如圖,過點(diǎn)N作NG⊥AB,
∴S△BCN=S四邊形OCNG+S△MNG-S△OBC=(4+6)×4+(8-4)×6-×8×6=8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某貨運(yùn)公司接到噸物資運(yùn)載任務(wù),現(xiàn)有甲、乙、丙三種車型的汽車供選擇,每輛車的運(yùn)載能力和運(yùn)費(fèi)如表:
車型 | 甲 | 乙 | 丙 |
汽車運(yùn)載量(噸/輛) | 5 | 8 | 10 |
汽車運(yùn)費(fèi)(元/輛) | 400 | 500 | 600 |
(1)甲種車型的汽車輛,乙種車型的汽車輛,丙種車型的汽車輛,它們一次性能運(yùn)載 噸貨物.
(2)若全部物資都用甲、乙兩種車型的汽車來(lái)運(yùn)送,需運(yùn)費(fèi)元,求需要甲、乙兩種車型的汽車各多少輛?
(3)為了節(jié)省運(yùn)費(fèi),該公司打算用甲、乙、丙三種車型的汽車共輛同時(shí)參與運(yùn)送,請(qǐng)你幫貨運(yùn)公司設(shè)計(jì)派車方案;并求出各種派車方案的運(yùn)費(fèi).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分線BE交AC的延長(zhǎng)線于點(diǎn)E.
(1)求∠CBE的度數(shù);
(2)過點(diǎn)D作DF∥BE,交AC的延長(zhǎng)線于點(diǎn)F,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)習(xí)幾何的一個(gè)重要方法就是要學(xué)會(huì)抓住基本圖形,讓我們來(lái)做一次研究性學(xué)習(xí).
(1)如圖①所示的圖形,像我們常見的學(xué)習(xí)用品一圓規(guī),我們常把這樣的圖形叫做“規(guī)形圖”.請(qǐng)你觀察“規(guī)形圖”,試探究∠BOC與∠A、∠B、∠C之間的關(guān)系,并說(shuō)明理由:
(2)如圖②,若△ABC中,BO平分∠ABC,CO平分∠ACB,且它們相交于點(diǎn)O,試探究∠BOC與∠A的關(guān)系;
(3)如圖③,若△ABC中,∠ABO=∠ABC,∠ACO=∠ACB,且BO、CO相交于點(diǎn)O,請(qǐng)直接寫出∠BOC與∠A的關(guān)系式為 _.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)場(chǎng)學(xué)習(xí)題:
問題背景:
在△ABC中,AB、BC、AC三邊的長(zhǎng)分別為、、,求這個(gè)三角形的面積.
小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖1所示,這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.
(1)請(qǐng)你將△ABC的面積直接填寫在橫線上. .
思維拓展:
(2)我們把上述求△ABC面積的方法叫做構(gòu)圖法,若△ABC三邊的長(zhǎng)分別為a,2a、a(a>0),請(qǐng)利用圖2的正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為a)畫出相應(yīng)的△ABC,并求出它的面積是: .
探索創(chuàng)新:
(3)若△ABC三邊的長(zhǎng)分別為、、(m>0,n>0,m≠n),請(qǐng)運(yùn)用構(gòu)圖法在圖3指定區(qū)域內(nèi)畫出示意圖,并求出△ABC的面積為: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在△ABC中,AB=13,BC=12,點(diǎn)D,E分別是AB,BC的中點(diǎn),連接DE,CD,如果DE=2.5,那么△ACD的周長(zhǎng)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店銷售一種品牌電腦,四月份營(yíng)業(yè)額為萬(wàn)元.為擴(kuò)大銷售,在五月份將每臺(tái)電腦按原價(jià)折銷售,銷售量比四月份增加臺(tái),營(yíng)業(yè)額比四月份多了千元.
求四月份每臺(tái)電腦的售價(jià).
六月份該商店又推出一種團(tuán)購(gòu)促銷活動(dòng),若購(gòu)買不超過臺(tái),每臺(tái)按原價(jià)銷售:若超過臺(tái),超過的部分折銷售,要想在六月份團(tuán)購(gòu)比五月份團(tuán)購(gòu)更合算,則至少要買多少臺(tái)電腦?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB=AC,EB=EC,AE的延長(zhǎng)線交BC于D,則圖中全等的三角形共有_____對(duì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】全面兩孩政策實(shí)施后,甲,乙兩個(gè)家庭有了各自的規(guī)劃.假定生男生女的概率相同,回答下列問題:
(1)甲家庭已有一個(gè)男孩,準(zhǔn)備再生一個(gè)孩子,則第二個(gè)孩子是女孩的概率是 ;
(2)乙家庭沒有孩子,準(zhǔn)備生兩個(gè)孩子,求至少有一個(gè)孩子是女孩的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com