【題目】如圖, 是⊙O外一點(diǎn), 為切線,割線 經(jīng)過(guò)圓心

(1)若 ,求 的半徑長(zhǎng);
(2)作 的角平分線交 ,求 的度數(shù).

【答案】
(1)解:連接OC,∵PC是⊙O的切線,∴∠PCO=90°,設(shè)⊙O的半徑長(zhǎng)為r,在Rt△PCO中,PC= ,PO=12-r,CO=r,由勾股定理得: ,解得r=4;


(2)解:∵DP是∠BPC的角平分線,

∴∠CPB=2∠BPD,

∵OC=OB,

∴∠COP=2∠OBC=2∠OCB,在△PCB中,∠CPB+∠B+PCB=180°,

∵∠PCO=90°,

∴∠CPO+∠COP=45°,

∴∠DPB+∠B=45°,

∴∠CDP=∠DPB+∠B=45°.


【解析】【(1)由已知PC是⊙O的切線,添加輔助線連接OC,在Rt△PCO中,利用勾股定理,建立方程即可求出圓的半徑。
(2)根據(jù)角平分線的定義得出∠CPB=2∠BPD,再根據(jù)等腰三角形的性質(zhì)及三角形的外角的性質(zhì)證出∠COP=2∠OBC=2∠OCB,然后根據(jù)三角形的內(nèi)角和定理及等量代換即可求得結(jié)果。
【考點(diǎn)精析】本題主要考查了三角形的內(nèi)角和外角和三角形的外角的相關(guān)知識(shí)點(diǎn),需要掌握三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角;直角三角形的兩個(gè)銳角互余;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;三角形一邊與另一邊的延長(zhǎng)線組成的角,叫三角形的外角;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)化簡(jiǎn)求值:,其中x=﹣

2)小王購(gòu)買(mǎi)了一套經(jīng)濟(jì)適用房,他準(zhǔn)備將地面鋪上地磚,地面結(jié)構(gòu)如圖所示.根據(jù)圖中的數(shù)據(jù)(單位:m),解答下列問(wèn)題:

用含xy的代數(shù)式表示廚房的面積是_____m2;臥室的面積是______m2

寫(xiě)出用含x、y的代數(shù)式表示這套房的總面積是多少平方米?

當(dāng)x=3,y=2時(shí),求這套房的總面積是多少平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABCD的頂點(diǎn)的坐標(biāo)分別為A(﹣6,9),B(0,9),C(3,0),D(﹣3,0),拋物線y=ax2+bx+c(a,b,c為常數(shù),且a≠0)過(guò)A、B兩點(diǎn),頂點(diǎn)為M.

(1)若拋物線過(guò)點(diǎn)C,求拋物線的解析式;
(2)若拋物線的頂點(diǎn)M落在△ACD的內(nèi)部(包括邊界),求a的取值范圍;
(3)若a<0,連結(jié)CM交線段AB于點(diǎn)Q(Q不與點(diǎn)B重合),連接DM交線段AB于點(diǎn)P,設(shè)S1=SADP+SCBQ , S2=SMPQ , 試判斷S1與S2的大小關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在8×8的網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)都是1,線段交點(diǎn)稱作格點(diǎn).任意連接這些格點(diǎn),可得到一些線段.按要求作圖:

(1)請(qǐng)畫(huà)出ABC的高AD;

(2)請(qǐng)連接格點(diǎn),用一條線段將圖中ABC分成面積相等的兩部分;

(3)直接寫(xiě)出ABC的面積是_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ACE是以ABCD的對(duì)角線AC為邊的等邊三角形,點(diǎn)C與點(diǎn)E關(guān)于x軸對(duì)稱.若E點(diǎn)的坐標(biāo)是(7,﹣3 ),則D點(diǎn)的坐標(biāo)為(  )

A. 3,0

B. 4,0

C. 5,0

D. 6,0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在正方形網(wǎng)格中有一個(gè)△ABC,按要求進(jìn)行下列作圖(只能借助于網(wǎng)格):

(1)畫(huà)出△ABCBC邊上的高AD;

(2)畫(huà)出先將△ABC向右平移6格,再向上平移3格后的△A1B1C1;

(3)畫(huà)一個(gè)△BCP(要求各頂點(diǎn)在格點(diǎn)上,P不與A點(diǎn)重合),使其面積等于△ABC的面積.并回答,滿足這樣條件的點(diǎn)P________個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程:
(1)x2﹣4x﹣4=0;
(2)x(x﹣2)=15.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,CA=12 cm,BC=12cm;動(dòng)點(diǎn)P從點(diǎn)C開(kāi)始沿CA以2 cm/s的速度向點(diǎn)A移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)A開(kāi)始沿AB以4cm/s的速度向點(diǎn)B移動(dòng),動(dòng)點(diǎn)R從點(diǎn)B開(kāi)始沿BC以 2cm/s的速度向點(diǎn)C移動(dòng).如果P、Q、R分別從C、A、B同時(shí)移動(dòng),移動(dòng)時(shí)間為t(0<t<6)s.

(1)∠CAB的度數(shù)是;
(2)以CB為直徑的⊙O與AB交于點(diǎn)M,當(dāng)t為何值時(shí),PM與⊙O相切?
(3)寫(xiě)出△PQR的面積S隨動(dòng)點(diǎn)移動(dòng)時(shí)間t的函數(shù)關(guān)系式,并求S的最小值及相應(yīng)的t值;
(4)是否存在△APQ為等腰三角形?若存在,求出相應(yīng)的t值;若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某服裝店用8000元購(gòu)進(jìn)一批襯衫,以58/件的價(jià)格出售,很快售完,然后又用17600元購(gòu)進(jìn)同款襯衫,購(gòu)進(jìn)數(shù)量是第一次的2倍,購(gòu)進(jìn)的單價(jià)比上一次每件多4元,服裝店仍按原售價(jià)58/件出售,并且全部售完.

1)該服裝店第一次購(gòu)進(jìn)襯衫多少件?

2)將該服裝店兩次購(gòu)進(jìn)襯衫看作一筆生意,那么這筆生意是盈利還是虧損?求出盈利(或虧損)多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案