【題目】開(kāi)學(xué)初,小明到文具批發(fā)部一次性購(gòu)買(mǎi)某種筆記本,該文具批發(fā)部規(guī)定:這種筆記本售價(jià)y(元/本)與購(gòu)買(mǎi)數(shù)量x(本)之間的函數(shù)關(guān)系如圖所示.
(1)圖中線(xiàn)段AB所表示的實(shí)際意義是;
(2)請(qǐng)直接寫(xiě)出y與x之間的函數(shù)關(guān)系式;
(3)已知該文具批發(fā)部這種筆記本的進(jìn)價(jià)是3元/本,若小明購(gòu)買(mǎi)此種筆記本超過(guò)10本但不超過(guò)20本,那么小明購(gòu)買(mǎi)多少本時(shí),該文具批發(fā)部在這次買(mǎi)賣(mài)中所獲的利潤(rùn)W(元)最大?最大利潤(rùn)是多少?
【答案】
(1)
解:圖中線(xiàn)段AB所表示的實(shí)際意義是:購(gòu)買(mǎi)不超過(guò)10本此種筆記本時(shí)售價(jià)為5元/本.
故答案為:購(gòu)買(mǎi)不超過(guò)10本此種筆記本時(shí)售價(jià)為5元/本.
(2)
解:①當(dāng)0<x≤10時(shí),
y與x之間的函數(shù)關(guān)系式y(tǒng)=5;
②當(dāng)10<x≤20時(shí),
設(shè)y=kx+b把B(10,5),C(20,4)代入得 ,
解得 .
所以y與x之間的函數(shù)關(guān)系式y(tǒng)=﹣0.1x+6;
③當(dāng)x>20時(shí),
y與x之間的函數(shù)關(guān)系式y(tǒng)=4.
③當(dāng)20<x時(shí),y與x之間的函數(shù)關(guān)系式為:y=4.
(3)解:W=(﹣0.1x+6﹣3)x=﹣0.1×(x﹣15)2+22.5.
答:當(dāng)小明購(gòu)買(mǎi)15本時(shí),該文具批發(fā)部在這次買(mǎi)賣(mài)中所獲的利潤(rùn)最大,最大利潤(rùn)是22.5元.
【解析】(1)由所給的一次函數(shù)圖象觀(guān)察線(xiàn)段AB即可得出線(xiàn)段AB所表示的實(shí)際意義是:購(gòu)買(mǎi)不超過(guò)10本此種筆記本時(shí)售價(jià)為5元/本,
(2)分三種情況①當(dāng)0<x≤10時(shí),②當(dāng)10<x≤20時(shí),③當(dāng)20<x時(shí)分別求解即可,
(3)先列出W的關(guān)系式,再利用二次函數(shù)的最值求解即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】校文藝部在全校范圍內(nèi)隨機(jī)抽取一部分同學(xué),對(duì)同學(xué)們喜愛(ài)的四種“明星真人秀”節(jié)目進(jìn)行問(wèn)卷調(diào)查(每位同學(xué)只能選擇一種最喜愛(ài)的節(jié)目),并將調(diào)查結(jié)果整理后分別繪制成如圖所示的不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖).
請(qǐng)根據(jù)所給信息回答下列問(wèn)題:
(1)本次問(wèn)卷調(diào)查共調(diào)查了多少名學(xué)生?
(2)請(qǐng)將兩幅統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校有1500名學(xué)生,據(jù)此估計(jì)有多少名學(xué)生最喜愛(ài)《奔跑吧兄弟》節(jié)目.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=ax+1與x軸、y軸分別相交于A、B兩點(diǎn),與雙曲線(xiàn)y= (x>0)相交于點(diǎn)P,PC⊥x軸于點(diǎn)C,且PC=2,點(diǎn)A的坐標(biāo)為(﹣2,0).
(1)求雙曲線(xiàn)的解析式;
(2)若點(diǎn)Q為雙曲線(xiàn)上點(diǎn)P右側(cè)的一點(diǎn),且QH⊥x軸于H,當(dāng)以點(diǎn)Q、C、H為頂點(diǎn)的三角形與△AOB相似時(shí),求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2015年5月,某校組織了以“德潤(rùn)書(shū)香”為主題的電子小報(bào)制作比賽,評(píng)分結(jié)果只有60,70,80,90,100五種,現(xiàn)從中隨機(jī)抽取部分作品,對(duì)其份數(shù)和成績(jī)進(jìn)行整理,制成如下兩幅不完整的統(tǒng)計(jì)圖:
根據(jù)以上信息,解答下列問(wèn)題:
(1)求本次抽取了多少份作品,并補(bǔ)全兩幅統(tǒng)計(jì)圖;
(2)已知該校收到參賽作品共900份,比賽成績(jī)達(dá)到90分以上(含90分)的為優(yōu)秀作品,據(jù)此估計(jì)該校參賽作品中,優(yōu)秀作品有多少份?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AD=2,CD=1,連接AC,以對(duì)角線(xiàn)AC為邊,按逆時(shí)針?lè)较蜃骶匦蜛BCD的相似矩形AB1C1C,再連接AC1 , 以對(duì)角線(xiàn)AC1為邊作矩形AB1C1C的相似矩形AB2C2C1 , …,按此規(guī)律繼續(xù)下去,則矩形ABnCnCn﹣1的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=x+3與x軸交于點(diǎn)C,與y軸交于點(diǎn)B,拋物線(xiàn)y=ax2+x+c經(jīng)過(guò)B、C兩點(diǎn).
(1)求拋物線(xiàn)的解析式;
(2)如圖,點(diǎn)E是直線(xiàn)BC上方拋物線(xiàn)上的一動(dòng)點(diǎn),當(dāng)△BEC面積最大時(shí),請(qǐng)求出點(diǎn)E的坐標(biāo)和△BEC面積的最大值?
(3)在(2)的結(jié)論下,過(guò)點(diǎn)E作y軸的平行線(xiàn)交直線(xiàn)BC于點(diǎn)M,連接AM,點(diǎn)Q是拋物線(xiàn)對(duì)稱(chēng)軸上的動(dòng)點(diǎn),在拋物線(xiàn)上是否存在點(diǎn)P,使得以P、Q、A、M為頂點(diǎn)的四邊形是平行四邊形?如果存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為矩形,E為BC邊中點(diǎn),連接AE,以AD為直徑的⊙O交AE于點(diǎn)F,連接CF.
(1)求證:CF與⊙O相切;
(2)若AD=2,F(xiàn)為AE的中點(diǎn),求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C1:ρ2﹣4ρcosθ+3=0,θ∈[0,2π],曲線(xiàn)C2:ρ= ,θ∈[0,2π]. (Ⅰ)求曲線(xiàn)C1的一個(gè)參數(shù)方程;
(Ⅱ)若曲線(xiàn)C1和曲線(xiàn)C2相交于A、B兩點(diǎn),求|AB|的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com