【題目】如圖,鄰邊不等的矩形花圃ABCD,它的一邊AD利用已有的圍墻,另外三邊所圍的柵欄的總長(zhǎng)度是6m.若矩形的面積為4m2,求AB的長(zhǎng)度。(可利用的圍墻長(zhǎng)度不超過(guò)3m

【答案】解:設(shè)m,則m . ………1

根據(jù)題意可得,. ………2

解得………4

答:AB的長(zhǎng)為1 m.

【解析】

試題設(shè)垂直墻的籬笆的長(zhǎng)為x,那么平行墻的籬笆長(zhǎng)為(6-2x),(6-2x)和x就是雞場(chǎng)的長(zhǎng)和寬.然后用面積做等量關(guān)系可列方程求解.

試題解析:設(shè)AB長(zhǎng)為x米,則BC長(zhǎng)為(6-2x)米.

依題意,得x6-2x=4

整理,得x2-3x+2=0

解方程,得x1=1,x2=2

所以當(dāng)x=1時(shí),6-2x=4

當(dāng)x=2時(shí),6-2x=2(舍去).

答:AB的長(zhǎng)為1米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形ABCD中,點(diǎn)EAD的中點(diǎn),連接BE,BF平分∠EBCCD于點(diǎn)F,交AC于點(diǎn)G,將CGF沿直線(xiàn)GF折疊至C′GF,BDC′GF相交于點(diǎn)M、N,連接CN,若AB=6,則四邊形CNC′G的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)ykx+bk0)與反比例函數(shù)ym0)的圖象相交于A、B兩點(diǎn),過(guò)點(diǎn)AADx軸于點(diǎn)DAO5,ODAD,B點(diǎn)的坐標(biāo)為(﹣6n).

1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;

2Py軸上一點(diǎn),且△AOP是等腰三角形,請(qǐng)直接寫(xiě)出所有符合條件的P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形ABCD中,點(diǎn)M是射線(xiàn)BC上一點(diǎn),點(diǎn)N是CD延長(zhǎng)線(xiàn)上一點(diǎn),且BM=DN.直線(xiàn)BD與MN相交于E.

(1)如圖1,當(dāng)點(diǎn)M在BC上時(shí),求證:BD-2DE=BM;

(2)如圖2,當(dāng)點(diǎn)M在BC延長(zhǎng)線(xiàn)上時(shí),BD、DE、BM之間滿(mǎn)足的關(guān)系式是什么?;

(3)在(2)的條件下,連接BN交AD于點(diǎn)F,連接MF交BD于點(diǎn)G.若DE=,且AF:FD=1:2時(shí),求線(xiàn)段DG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某大樓的頂部樹(shù)有一塊廣告牌CD,小李在山坡的坡腳A處測(cè)得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測(cè)得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1,AB=10,AE=15.(i=1是指坡面的鉛直高度BH與水平寬度AH的比)

1)求點(diǎn)B距水平面AE的高度BH

2)求廣告牌CD的高度.

(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1.參考數(shù)據(jù):1.414,1.732

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的口袋里裝著只有顏色不同的黑、白兩種顏色的球共20只,某學(xué)習(xí)小組作摸球?qū)嶒?yàn),將球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回袋中,不斷重復(fù),下表示活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù):

摸球的次數(shù)n

100

150

200

500

800

1000

摸到白球的次數(shù)m

58

96

116

295

484

601

摸到白球的頻率

0.58

0.64

0.58

0.59

0.605

0.601

請(qǐng)估算口袋中白球約是(   )只.

A. 8 B. 9 C. 12 D. 13

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,BD平分∠ABC,AEBD于點(diǎn)O,交BC于點(diǎn)EADBC,連接CD

(1)求證:AOEO

(2)若AEABC的中線(xiàn),則四邊形AECD是什么特殊四邊形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在“測(cè)量物體的高度”活動(dòng)中,某數(shù)學(xué)興趣小組的3名同學(xué)選擇了測(cè)量學(xué)校里的兩棵樹(shù)的高度,在同一時(shí)刻的陽(yáng)光下,他們分別做了以下工作

小芳測(cè)得一根長(zhǎng)為1米的竹竿的影長(zhǎng)為0.8;

小麗測(cè)量甲樹(shù)的影長(zhǎng)為4如圖1);

小華發(fā)現(xiàn)乙樹(shù)的影子不全落在地面上,有一部分影子落在教學(xué)樓的墻壁上如圖2),墻壁上的影長(zhǎng)為1.2落在地面上的影長(zhǎng)為2.4

(1)請(qǐng)直接寫(xiě)出甲樹(shù)的高度為   ;

(2)求乙樹(shù)的高度

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某蔬菜生產(chǎn)基地在氣溫較低時(shí),用裝有恒溫系統(tǒng)的大棚栽培一種在自然光照且溫度為18的條件下生長(zhǎng)最快的新品種.圖是某天恒溫系統(tǒng)從開(kāi)啟到關(guān)閉及關(guān)閉后,大棚內(nèi)溫度y()隨時(shí)間x(小時(shí))變化的函數(shù)圖象,其中BC段是雙曲線(xiàn)的一部分.請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:

(1)恒溫系統(tǒng)在這天保持大棚內(nèi)溫度18的時(shí)間有多少小時(shí)?

(2)求k的值;

(3)當(dāng)x=16時(shí),大棚內(nèi)的溫度約為多少度?

查看答案和解析>>

同步練習(xí)冊(cè)答案