【題目】如圖,某大樓的頂部樹有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1,AB=10,AE=15.(i=1是指坡面的鉛直高度BH與水平寬度AH的比)

1)求點B距水平面AE的高度BH;

2)求廣告牌CD的高度.

(測角器的高度忽略不計,結果精確到0.1.參考數(shù)據:1.414,1.732

【答案】解:(1)過BBGDEG,

RtABF中,i=tanBAH=,∴∠BAH=30°

BH=AB=5)。

答:點B距水平面AE的高度BH5。

21BH=5,AH=5

BG=AH+AE=5+15。

RtBGC,CBG=45°CG=BG=5+15

RtADE,DAE=60°AE=15,

DE=AE=15。

CD=CG+GEDE=5+15+515=2010≈2.7)。

答:宣傳牌CD高約2.7。

【解析】

試題1)過BDE的垂線,設垂足為G.分別在RtABH中,通過解直角三角形求出BHAH。

2)在ADE解直角三角形求出DE的長,進而可求出EHBG的長,在RtCBG中,CBG=45°,則CG=BG,由此可求出CG的長然后根據CD=CG+GE﹣DE即可求出宣傳牌的高度。 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)軸上線段AB=2(單位長度),線段CD=4(單位長度),點A在數(shù)軸上表示的數(shù)是-10,點C在數(shù)軸上表示的數(shù)是16.若線段AB以每秒6個單位長度的速度向右勻速運動,同時線段CD以每秒2個單位長度的速度向左勻速運動.設運動時間為t s.

(1)當點B與點C相遇時,點A、點D在數(shù)軸上表示的數(shù)分別為________;

(2)t為何值時,點B剛好與線段CD的中點重合;

(3)當運動到BC=8(單位長度)時,求出此時點B在數(shù)軸上表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在四邊形ABCD的邊AB上任取一點E(點E不與A,B重合),分別連接ED,EC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把E叫做四邊形ABCD的邊AB上的“相似點”;如果這三個三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的“強相似點”.

【試題再現(xiàn)】如圖②,在△ABC中,∠ACB=90°,直角頂點C在直線DE上,分別過點A,B作AD⊥DE于點D,BE⊥DE于點E.求證:△ADC∽△CEB.

【問題探究】在圖①中,若∠A=∠B=∠DEC=40°,試判斷點E是否是四邊形ABCD的邊AB上的相似點,并說明理由.

【深入探究】如圖③,AD∥BC,DP平分∠ADC,CP平分∠BCD交DP于點P,過點P作AB⊥AD于點A,交BC于點B.

(1)請證明點P是四邊形ABCD的邊AB上的一個強相似點.

(2)若AD=3,BC=5,試求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,把一張長10厘米、寬6厘米的長方形紙板分成兩個相同的直角三角形.

(1)甲三角形(如圖2)旋轉一周,可以形成一個怎樣的幾何體?它的體積是多少立方米?

(2)乙三角形(如圖3)旋轉一周,可以形成一個怎樣的幾何體?它的體積是多少立方米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在某地,人們發(fā)現(xiàn)在一定溫度下某種蟋蟀叫的次數(shù)與溫度之間有如下的近似關系:用蟋蟀1min叫的次數(shù)除以7,然后再加上3,就近似地得到該地當時的溫度(℃).

1)用代數(shù)式表示該地當時的溫度;

2)當蟋蟀1min叫的次數(shù)分別是84,105126時,該地當時的溫度約是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在數(shù)軸上點表示數(shù),點表示數(shù)表示點和點之間的距離,且、滿足數(shù)軸上有一動點,從點出發(fā),以每秒2個單位長度的速度沿數(shù)軸向右勻速運動,設運動時間為,

1)點表示的數(shù)為   ,點表示的數(shù)為   

2)點表示的數(shù)   (用含的代數(shù)式表示);

3)當點運動   秒時,點和點之間距離為4;

4)若數(shù)軸上另有一動點,同時從點出發(fā),以每秒1個單位長度的速度沿數(shù)軸向左勻速運動,當點和點之間距離為6時,求時間的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖 1,二次函數(shù)的圖像過點 A (3,0),B (0,4)兩點,動點 P A 出發(fā),在線段 AB 上沿 A B 的方向以每秒 2 個單位長度的速度運動,過點P PDy 于點 D ,交拋物線于點 C 設運動時間為 t (秒).

1)求二次函數(shù)的表達式;

(2)連接 BC ,當t時,求BCP的面積;

(3)如圖 2,動點 P A 出發(fā)時,動點 Q 同時從 O 出發(fā),在線段 OA 上沿 OA 的方向以 1個單位長度的速度運動,當點 P B 重合時,P 、 Q 兩點同時停止運動,連接 DQ 、 PQ ,將DPQ沿直線 PC 折疊到 DPE 在運動過程中,設 DPE OAB重合部分的面積為 S ,直接寫出 S t 的函數(shù)關系式及 t 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在△ABC中,DBC邊上一點,∠1=∠2,∠3=∠4.

1)若∠1=35°,求∠DAC的度數(shù);

2)若∠BAC=69°,求∠DAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某出租車司機從公司出發(fā),在東西方向的人民路上連續(xù)接送批客人,行駛路程記錄如下(規(guī)定向東為正,向西為負,單位:):

1)接送完第批客人后,該駕駛員在公司什么方向,距離公司多少千米?

2)若該出租車每千米耗油升,那么在這過程中共耗油多少升?

3)若該出租車的計價標準為:行駛路程不超過收費元,超過的部分按每千米元收費,在這過程中該駕駛員共收到車費多少元?

查看答案和解析>>

同步練習冊答案