【題目】如圖,O為直線AB上一點,∠COE=90°,OF平分∠AOE.
(1)若∠COF=40°,求∠BOE的度數(shù).
(2)若∠COF=α(0°<α<90°),則∠BOE=______(用含α的式子表示).
【答案】(1)∠BOE=80°;(2)∠BOE=2α.
【解析】
(1)和(2)思路是一樣的,因為∠BOE=∠AOB-∠AOE,要想求∠BOE的度數(shù),只要求出∠AOE即可,根據(jù)題中已知條件,即可解答.
(1)因為∠EOF=∠COE-∠COF=90°-40°=50°,
又因為OF平分∠AOE,
所以∠AOE=2∠EOF=100°
所以∠BOE=∠AOB-∠AOE=180°-100°=80°;
(2)∠EOF=∠COE-∠COF=90°-α,
因為OF平分∠AOE,
所以∠AOE=2∠EOF=2(90°-α)=180°-2α,
所以∠BOE=∠AOB-∠AOE=180°-(180°-2α)=2α.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知⊙O的半徑為1,AC是⊙O的直徑,過點C作⊙O的切線BC,E是BC的中點,AB交⊙O于D點.
(1)直接寫出ED和EC的數(shù)量關系:;
(2)DE是⊙O的切線嗎?若是,給出證明;若不是,說明理由;
(3)填空:當BC=時,四邊形AOED是平行四邊形,同時以點O、D、E、C為頂點的四邊形是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0),B(5,0)兩點,直線y=﹣ x+3與y軸交于點C,與x軸交于點D.點P是x軸上方的拋物線上一動點,過點P作PF⊥x軸于點F,交直線CD于點E.設點P的橫坐標為m.
(1)求拋物線的解析式;
(2)若PE=5EF,求m的值;
(3)若點E′是點E關于直線PC的對稱點,是否存在點P,使點E′落在y軸上?若存在,請直接寫出相應的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形ABCD中,E、F分別是邊BC、CD的中點,連接AE,AF.
(1)如圖1,若四邊形ABCD的面積為5,則四邊形AECF的面積為____________;
(2)如圖2,延長AE至G,使EG=AE,延長AF至H,使FH=AF,連接BG、GH、HD、DB.
求證:四邊形BGHD是平行四邊形;
(3)如圖3,對角線 AC、BD相交于點M, AE與BD交于點P, AF與BD交于點N. 直接寫出BP、PM、MN、ND的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了加強訓練學生的籃球和足球運球技能,準備購買一批籃球和足球用于訓練,已知1個籃球和2個足球共需116元;2個籃球和3個足球共需204元
求購買1個籃球和1個足球各需多少元?
若學校準備購進籃球和足球共40個,并且總費用不超過1800元,則籃球最多可購買多少個?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠CAB=50°.按以下步驟作圖:①以點A為圓心,小于AC的長為半徑畫弧,分別交AB、AC于點E、F;②分別以點E、F為圓心,大于 EF的長為半徑畫弧,兩弧相交于點G;③作射線AG交BC邊于點D.則∠ADC的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,鈍角△ABC.
(1)過A作AE⊥BC,過B作BF⊥AC,垂足分別為E,F(xiàn),AE,BF相交于H;
(2)過A作AM∥BC,過B作BM∥AC,相交于M;
(3)若∠AMB=115°,求∠AHB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列等式:
第一個等式:a1==-
第二個等式:a2==-
第三個等式:a3==-
第四個等式:a4==-
按上述規(guī)律,回答下列問題:
(1)請寫出第六個等式:a6=_____=_____;
(2)用含n的代數(shù)式表示第n個等式:an=_____=_____;
(3)a1+a2+a3+a4+a5+a6=_____(得出最簡結果);
(4)計算:a1+a2+…+an.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com