【題目】某學校隨機抽取部分學生,調查每個月的零花錢消費額,數(shù)據(jù)整理成如下的統(tǒng)計表和如圖①②所示的兩幅不完整的統(tǒng)計圖,已知圖①中A,E兩組對應的小長方形的高度之比為21請結合相關數(shù)據(jù)解答以下問題:

(1)本次調查樣本的容量是______

(2)補全頻數(shù)分布直方圖,并標明各組的頻數(shù);

(3)若該學校有2500名學生,請估計月消費零花錢不少于300元的學生的數(shù)量.

【答案】1100;(2)見解析;(3750

【解析】

1)(2)根據(jù)樣本容量、頻數(shù)、頻率的關系進行求解;(3)根據(jù)頻率估計概率進行求解.

1)由圖①中A,E兩組對應的小長方形的高度之比為21,可得E組的頻數(shù)為5,則A組和E組的頻數(shù)之和為15,由圖②可知,A組和E組的頻率為15%,則樣本容量為.

2)由樣本容量和圖②中各組的頻率,可知各組的頻數(shù)依次為:10、20、40、25、5,則頻數(shù)分布直方圖如下:

3)月消費零花錢不少于300元的學生是調查樣本中D組和E組代表的學生,總頻率為30%,根據(jù)頻率估計概率,則該學校有2500名學生有30%的學生月消費零花錢不少于300元,即750名學生.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在長方中,為平面直角坐標系的原點,兩點的坐標分別為,,點在第一象限.

1 寫出點坐標;

2 若過點的直線,且把分為:兩部分,求出點的坐標;

3 在(2)的條件下,求出四邊形的面積;

4 若點是射線上的點,請直接寫出之間的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖中任一點經過平移后對應點為.作同樣的平移得到,已知,,,

1 在圖中畫出,;

2 直接寫出的坐標分別為

3 ,的面積為____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,分別以Rt△ABC的斜邊AB,直角邊AC為邊向外作等邊△ABD△ACE,F(xiàn)AB的中點,DE,AB相交于點G,若∠BAC=30°,下列結論:①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;④△DBF≌△EFA.其中正確結論的序號是( 。

A. ②④ B. ①③ C. ②③④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF為正三角形,點E、F分別在菱形的邊BC、CD上滑動,且E、F不與B、C、D重合.當點E、FBC、CD上滑動時,則△CEF的面積最大值是____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圖1ΔABC是等邊三角形,DE是中位線,F是線段BC延長線上一點,且CF=AE,連接BE,EF.

1 2

(1)求證:BE=EF;

(2)若將DE從中位線的位置向上平移,使點D、E分別在線段AB、AC(E與點A不重合),其他條件不變,如圖2,則(1)題中的結論是否成立?若成立,請證明;若不成立.請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD中,EAD的中點,EF⊥ACCB的延長線于點F

1DEBF相等嗎?請說明理由.

2)連接AF、BE,四邊形AFBE是平行四邊形嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司有AB兩種型號的客車共20,它們的載客量、每天的租金如表所示.已知在20輛客車都坐滿的情況下,共載客720.

A型號客車

B型號客車

載客量(/)

45

30

租金(/)

600

450

(1)AB兩種型號的客車各有多少輛?

(2)某中學計劃租用A、B兩種型號的客車共8,同時送七年級師生到沙家浜參加社會實踐活動,已知該中學租車的總費用不超過4600.

①求最多能租用多少輛A型號客車?

②若七年級的師生共有305,請寫出所有可能的租車方案,并確定最省錢的租車方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是正方形ABCD的對角線BD上一點,PE⊥BC于點E,PF⊥CD于點F,連接EF.給出下列五個結論:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=.其中正確結論的序號是(

A. ①②③④ B. ①②④⑤ C. ②③④⑤ D. ①③④⑤

查看答案和解析>>

同步練習冊答案