【題目】如圖,正方形的邊長為4,點在的邊上,且,與關(guān)于所在的直線對稱,將按順時針方向繞點旋轉(zhuǎn)得到,連接,則線段的長為( )
A.4B.C.5D.6
【答案】C
【解析】
如圖,連接BE,根據(jù)軸對稱的性質(zhì)得到AF=AD,∠EAD=∠EAF,根據(jù)旋轉(zhuǎn)的性質(zhì)得到AG=AE,∠GAB=∠EAD.求得∠GAB=∠EAF,根據(jù)全等三角形的性質(zhì)得到FG=BE,根據(jù)正方形的性質(zhì)得到BC=CD=AB=4.根據(jù)勾股定理即可得到結(jié)論.
解:如圖,連接BE,
∵△AFE與△ADE關(guān)于AE所在的直線對稱,
∴AF=AD,∠EAD=∠EAF,
∵△ADE按順時針方向繞點A旋轉(zhuǎn)90°得到△ABG,
∴AG=AE,∠GAB=∠EAD.
∴∠GAB=∠EAF,
∴∠GAB+∠BAF=∠BAF+∠EAF.
∴∠GAF=∠EAB.
∴△GAF≌△EAB(SAS).
∴FG=BE,
∵四邊形ABCD是正方形,
∴BC=CD=AB=4.
∵DE=1,
∴CE=3.
∴在Rt△BCE中,BE=,
∴FG=5,
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】九年級(1)班開展了為期一周的“敬老愛親”社會活動,并根據(jù)學生做家務的時間來評價他們在活動中的表現(xiàn).老師調(diào)查了全班50名學生在這次活動中做家務的時間,并將統(tǒng)計的時間(單位:小時)分成5組:A:0.5≤x<1,B:1≤x<1.5,C:1.5≤x<2,D:2≤x<2.5,E:2.5≤x<3,制作成兩幅不完整的統(tǒng)計圖(如圖).
請根據(jù)圖中提供的信息,解答下列問題:
(1)這次活動中學生做家務時間的中位數(shù)所在的組是____________;
(2)補全頻數(shù)分布直方圖;
(3)該班的小明同學這一周做家務2小時,他認為自己做家務的時間比班里一半以上的同學多,你認為小明的判斷符合實際嗎?請用適當?shù)慕y(tǒng)計知識說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E為BC的中點,BC=2AD,EA=ED,AC與ED相交于點F.
(1)求證:四邊形AECD是平行四邊形;
(2)試探究AB、CD之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)當AB與AC具有什么位置關(guān)系時,四邊形AECD是菱形?請說明理由;若EA=ED=2,求此時菱形AECD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年豬肉價格受非洲豬瘟疫情影響,有較大幅度的上升,為了解某地區(qū)養(yǎng)殖戶受非洲豬瘟疫情感染受災情況,現(xiàn)從該地區(qū)建檔的養(yǎng)殖戶中隨機抽取了部分養(yǎng)殖戶進行了調(diào)查(把調(diào)查結(jié)果分為四個等級:A級:非常嚴重;B級:嚴重;C級:一般;D級:沒有感染),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解決下列問題:
(1)本次抽樣調(diào)查的養(yǎng)殖戶的總戶數(shù)是 ;把圖2條形統(tǒng)計圖補充完整.
(2)若該地區(qū)建檔的養(yǎng)殖戶有1500戶,求非常嚴重與嚴重的養(yǎng)殖戶一共有多少戶?
(3)某調(diào)研單位想從5戶建檔養(yǎng)殖戶(分別記為a,b,c,d,e)中隨機選取兩戶,進一步跟蹤監(jiān)測病毒傳播情況,請用列表或畫樹狀圖的方法求出選中養(yǎng)殖戶e的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與軸交于點,與反比例函數(shù)第一象限內(nèi)的圖象交于點,連接,若.
(1)求直線的表達式和反比例函數(shù)的表達式;
(2)若直線與軸的交點為,求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】新能源汽車環(huán)保節(jié)能,越來越受到消費者的喜愛.各種品牌相繼投放市場.一汽貿(mào)公司經(jīng)銷某品牌新能源汽車.去年銷售總額為5000萬元,今年1~5月份,每輛車的銷售價格比去年降低1萬元.銷售數(shù)量與去年一整年的相同.銷售總額比去年一整年的少20%,今年1~5月份每輛車的銷售價格是多少萬元?設(shè)今年1~5月份每輛車的銷售價格為x萬元.根據(jù)題意,列方程正確的是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,AD=5,點E、F是正方形ABCD內(nèi)的兩點,且AE=FC=3,BE=DF=4,則EF的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=﹣x+4與拋物線y=﹣x2+bx+c交于A,B兩點,點A在y軸上,點B在x軸上.
(1)求拋物線的解析式;
(2)在x軸下方的拋物線上存在一點P,使得∠ABP=90°,求出點P坐標;
(3)點E是拋物線對稱軸上一點,點F是拋物線上一點,是否存在點E和點F使得以點E,F,B,O為頂點的四邊形是平行四邊形?若存在,求出點F的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com