【題目】如果一元二次方程ax2+bx+c=0(a≠0)的兩根是x1、x2,那么利用公式法寫出兩個(gè)根x1、x2,通過(guò)計(jì)算可以得出:x1+x2=,x1x2=.由此可見(jiàn),一元二次方程兩個(gè)根的和與積是由方程的系數(shù)決定的.這就是一元二次方程根與系數(shù)的關(guān)系.

請(qǐng)利用上述知識(shí)解決下列問(wèn)題:

(1)若方程2x2-4x-1=0的兩根是x1、x2,則x1+x2=__________,x1x2=__________

(2)已知方程x2-4x+c=0的一個(gè)根是,請(qǐng)求出該方程的另一個(gè)根和c的值

【答案】(1)2 -0.5(2)2- c=1

【解析】

(1)根據(jù)根與系數(shù)的關(guān)系得出即可.

(2)設(shè)方程的另一個(gè)根為a,根據(jù)根與系數(shù)的關(guān)系得出a+2+=4,(2+)a=c,求出即可.

(1)2x24x1=0,

x1+x2=2,x1x2,

故答案為:2,;

(2)設(shè)方程的另一個(gè)根為a,

a+2+=4,(2+)a=c,

解得:a=2,c=(2+)(2)=1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,邊上的中線,過(guò)點(diǎn)于點(diǎn),過(guò)點(diǎn)平行線,交的延長(zhǎng)線于點(diǎn),在延長(zhǎng)線上截得,連結(jié)、.若,,則四邊形的面積等于________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在A,B兩地間有一車站C,一輛汽車從A地出發(fā)經(jīng)C站勻速駛往B如圖是汽車行駛時(shí)離C站的路程千米與行駛時(shí)間小時(shí)之間的函數(shù)關(guān)系的圖象.

填空:______km,AB兩地的距離為______km;

求線段PMMN所表示的yx之間的函數(shù)表達(dá)式;

求行駛時(shí)間x在什么范圍時(shí),小汽車離車站C的路程不超過(guò)60千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,點(diǎn)在邊上,,點(diǎn)是邊上一個(gè)動(dòng)點(diǎn),若周長(zhǎng)的最小值是6,則的長(zhǎng)是(

A.B.C.D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在中,,點(diǎn)分別是直線上一個(gè)動(dòng)點(diǎn)。

1)若是等腰三角形,用直尺和圓規(guī)作出點(diǎn)(不寫作法,保留作圖痕跡),直接寫出的長(zhǎng);

2)若,求的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】⊙O中,AB為直徑,C⊙O上一點(diǎn).

(1)如圖1,過(guò)點(diǎn)C⊙O的切線,與AB延長(zhǎng)線相交于點(diǎn)P,若∠CAB=27°,求∠P的度數(shù);

(2)如圖2,D為弧AB上一點(diǎn),OD⊥AC,垂足為E,連接DC并延長(zhǎng),與AB的延長(zhǎng)線交于點(diǎn)P,若∠CAB=10°,求∠P的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,邊長(zhǎng)為2的等邊三角形AEF的頂點(diǎn)EF分別在BCCD上,下列結(jié)論:CE=CF;②∠AEB=75°BE+DF=EF;S正方形ABCD=

其中正確的序號(hào)是   (把你認(rèn)為正確的都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某跳水隊(duì)為了解運(yùn)動(dòng)員的年齡情況,作了一次年齡調(diào)查,根據(jù)跳水運(yùn)動(dòng)員的年齡(單位:歲),繪制出如下的統(tǒng)計(jì)圖和圖.請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:

(1)本次接受調(diào)查的跳水運(yùn)動(dòng)員人數(shù)為 ,圖的值為 ;

(2)求統(tǒng)計(jì)的這組跳水運(yùn)動(dòng)員年齡數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=kx4(k≠0)x、y軸分別交于點(diǎn)B,A,直線y=2x1y軸交于點(diǎn)C,與直線y=kx4交于點(diǎn)D,△ACD的面積是.

1)求直線AB的表達(dá)式;

2)設(shè)點(diǎn)E在直線AB上,當(dāng)△ACE是直角三角形時(shí),求出點(diǎn)E的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案