解:(1)∵A,B兩點關(guān)于x=1對稱,
∴B點坐標為(3,0),
根據(jù)題意得:
,
解得a=1,b=-2,c=-3.
∴拋物線的解析式為y=x
2-2x-3.
(2)△AOC和△BOC的面積分別為S
△AOC=
|OA|•|OC|,S
△BOC=
|OB|•|OC|,
而|OA|=1,|OB|=3,
∴S
△AOC:S
△BOC=|OA|:|OB|=1:3.
(3)存在一個點P.C點關(guān)于x=1對稱點坐標C'為(2,-3),
令直線AC'的解析式為y=kx+b
∴
,
∴k=-1,b=-1,即AC'的解析式為y=-x-1.
為x=1時,y=-2,
∴P點坐標為(1,-2).
分析:(1)根據(jù)拋物線的對稱軸即可得出點B的坐標,然后將A、B、C三點坐標代入拋物線中即可求得二次函數(shù)的解析式.
(2)由于兩三角形等高,那么面積比就等于底邊的比,據(jù)此求解即可.
(3)本題的關(guān)鍵是確定P點的位置,根據(jù)軸對稱圖形的性質(zhì)和兩點間線段最短,可找出C點關(guān)于拋物線對稱軸的對稱點,然后連接此點和A,那么這條直線與拋物線對稱軸的交點就是所求的P點.可先求出這條直線的解析式然后聯(lián)立拋物線對稱軸的解析式即可求得P點坐標.
點評:本題考查了二次函數(shù)解析式的確定,圖形面積的求法、函數(shù)圖象交點等知識點.
解題的關(guān)鍵是根據(jù)所學的知識確定點P的位置是解題的關(guān)鍵.