如圖,已知等邊三角形ABC,以邊BC為直徑的半圓與邊AB、AC分別交于點D、點E,過點E作EF⊥AB,垂足為點F.

(1)判斷EF與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)過點F作FH⊥BC,垂足為點H,若等邊△ABC的邊長為8,求FH的長.(結(jié)果保留根號)

(1)EF是⊙O的切線 (2) FH=BFsin60°=

解析試題分析:.
解:(1)EF是⊙O的切線.  
連接OE
∵△ABC是等邊三角形,
∴∠B=∠C=∠A=60°,

∵OE=OC,
∴△OCE是等邊三角形,
∴∠EOC=∠B=60°,
∴OE∥AB.
∵EF⊥AB,
∴EF⊥OE,
∴EF是⊙O的切線.
(2)∵OE∥AB,
∴OE是中位線.
∵AC=8,
∴AE=CE=4.
∵∠A=60°,EF⊥AB,
∴∠AEF=30°,
∴AF=2.  
∴BF=6.
∵FH⊥BC,∠B=60°,∴FH=BFsin60°=
考點:直線與圓之間的位置關(guān)系;圓的切線的性質(zhì)與判定的應(yīng)用;直角三角形中,邊與角之間的關(guān)系
點評:通過切線的判定定理來證明直線與圓相切,是證明此類問題的首選.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知等邊三角形ABC中,點D,E,F(xiàn)分別為邊AB,AC,BC的中點,M為直線BC上一動點,△DMN為等邊三角形(點M的位置改變時,△DMN也隨之整體移動).
(1)如圖1,當點M在點B左側(cè)時,請你判斷EN與MF有怎樣的數(shù)量關(guān)系?點F是否在直線NE上?都請直接寫出結(jié)論,不必證明或說明理由;
(2)如圖2,當點M在BC上時,其它條件不變,(1)的結(jié)論中EN與MF的數(shù)量關(guān)系是否仍然成立?若成立,請利用圖2證明;若不成立,請說明理由;
(3)若點M在點C右側(cè)時,請你在圖3中畫出相應(yīng)的圖形,并判斷(1)的結(jié)論中EN與MF的數(shù)量關(guān)系是否仍然成立?若成立,請直接寫出結(jié)論,不必證明或說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,已知等邊三角形ABC,在AB上取點D,在AC上取點E,使得AD=AE,作等邊三角形PCD,QAE和RAB,求證:P、Q、R是等邊三角形的三個頂點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知等邊三角形△AEC,以AC為對角線做正方形ABCD(點B在△AEC內(nèi),點D在△AEC外).連接EB,過E作EF⊥AB,交AB的延長線為F.
(1)猜測直線BE和直線AC的位置關(guān)系,并證明你的猜想.
(2)證明:△BEF∽△ABC,并求出相似比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知等邊三角形△AEC,以AC為對角線做正方形ABCD(點B在△AEC內(nèi),點D在△AEC外).連接EB,過E作EF⊥AB,交AB的延長線為F.請猜測直線BE和直線AC的位置關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知等邊三角形ABC的邊長為10,點P、Q分別為邊AB、AC上的一個動點,點P從點B出發(fā)以1cm/s的速度向點A運動,點Q從點C出發(fā)以2cm/s的速度向點A運動,連接PQ,以Q為旋轉(zhuǎn)中心,將線段PQ按逆時針方向旋轉(zhuǎn)60°得線段QD,若點P、Q同時出發(fā),則當運動
10
3
10
3
s時,點D恰好落在BC邊上.

查看答案和解析>>

同步練習(xí)冊答案