【題目】如圖,ABC為⊙O內接等邊三角形,將ABC繞圓心O旋轉30°DEF處,連接AD、AE,則∠EAD的度數(shù)為( )

A.150°B.135°C.120°D.105°

【答案】C

【解析】

連結OA、OE、OD、AE、AD,根據(jù)旋轉的性質得∠AOD=30°,再根據(jù)圓周角定理得∠AED=AOD=15°,然后根據(jù)等邊三角形的性質得∠EFD=60°,則∠DOE=120°,求出∠AOE=DOE-AOD=90°,則∠ADE=45°,根據(jù)三角形內角和可求出∠EAD的度數(shù).

如圖,連結OAOE、ODAE、AD,

∵△ABC繞點O順時針旋轉30°得到DEF,
∴∠AOD=30°,
∴∠AED=AOD=15°,
∵△DEF為等邊三角形,
∴∠EFD=60°
∴∠DOE=2EFD=120°,
∴∠AOE=DOE-AOD=120°-30°=90°
∴∠ADE=AOE=45°,
∴∠EAD=180°-AED-ADE=180°-15°-45°=120°
故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在半圓⊙O中,直徑AB=4,點CD是半圓上兩點,且∠BOC=84°,∠BOD=36°P為直徑上一點,則PC+PD的最小值為(

A.4B.2C.2D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們把函數(shù)y1x23x2(x0)沿y軸翻折得到函數(shù)y2,函數(shù)y1與函數(shù)y2的圖象合起來組成函數(shù)y3的圖象.若直線ykx2與函數(shù)y3的圖象剛好有兩個交點,則滿足條件的k的值為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形ABCD的邊長為4,一個以點A為頂點的45°角繞點A旋轉,角的兩邊分別與BC、DC的延長線交于點E、F,連接EF,設CE=a,CF=b.

(1)如圖1,當a=4時,求b的值;

(2)當a=4時,如圖2,求出b的值;

(3)如圖3,請寫出EAF繞點A旋轉的過程中a、b滿足的關系式,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相較于A2,3),B(﹣3,n)兩點.

1)求一次函數(shù)與反比例函數(shù)的解析式;

2)根據(jù)所給條件,請直接寫出不等式kx+b的解集;

3)過點BBCx軸,垂足為C,求SABC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知BO是△ABCAC邊上的高,其中BO=8,AO=6,CO=4,點M2個單位長度/秒的速度自CA在線段CA上作勻速運動,同時點N5個單位長度/秒的速度自AB在射線AB上作勻速運動,MNOB于點P.M運動到點A時,點M、N同時停止運動.設點M運動時間為t.

(1)線段AN的取值范圍是______.

(2)0t2時,

①求證:MNNP為定值.

②若△BNP與△MNA相似,求CM的長.

(3)2t5時,若△BNP是等腰三角形,求CM的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖將弧BC沿弦BC折疊交直徑AB于點D,若AD2,DB4,則弦BC的長是___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC的三個頂點的坐標分別為A(﹣2,3)、B(﹣6,0)、C(﹣10).

1)畫出△ABC關于原點成中心對稱的三角形△ABC′;

2)將△ABC繞坐標原點O逆時針旋轉90°,畫出圖形,直接寫出點B的對應點B″的坐標;

3)請直接寫出:以A、B、C為頂點的平行四邊形的第四個頂點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列是關于四個圖案的描述.

1所示是太極圖,俗稱陰陽魚,該圖案關于外圈大圓的圓心中心對稱;

2所示是一個正三角形內接于圓;

3所示是一個正方形內接于圓;

4所示是兩個同心圓,其中小圓的半徑是外圈大圓半徑的三分之二.

這四個圖案中,陰影部分的面積不小于該圖案外圈大圓面積一半的是(

A.1和圖3B.2和圖3C.2和圖4D.1和圖4

查看答案和解析>>

同步練習冊答案