【題目】如圖,△ABC為⊙O內接等邊三角形,將△ABC繞圓心O旋轉30°到△DEF處,連接AD、AE,則∠EAD的度數(shù)為( )
A.150°B.135°C.120°D.105°
【答案】C
【解析】
連結OA、OE、OD、AE、AD,根據(jù)旋轉的性質得∠AOD=30°,再根據(jù)圓周角定理得∠AED=∠AOD=15°,然后根據(jù)等邊三角形的性質得∠EFD=60°,則∠DOE=120°,求出∠AOE=∠DOE-∠AOD=90°,則∠ADE=45°,根據(jù)三角形內角和可求出∠EAD的度數(shù).
如圖,連結OA、OE、OD、AE、AD,
∵△ABC繞點O順時針旋轉30°得到△DEF,
∴∠AOD=30°,
∴∠AED=∠AOD=15°,
∵△DEF為等邊三角形,
∴∠EFD=60°,
∴∠DOE=2∠EFD=120°,
∴∠AOE=∠DOE-∠AOD=120°-30°=90°,
∴∠ADE=∠AOE=45°,
∴∠EAD=180°-∠AED-∠ADE=180°-15°-45°=120°.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在半圓⊙O中,直徑AB=4,點C、D是半圓上兩點,且∠BOC=84°,∠BOD=36°,P為直徑上一點,則PC+PD的最小值為( )
A.4B.2C.2D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們把函數(shù)y1=x2-3x+2(x>0)沿y軸翻折得到函數(shù)y2,函數(shù)y1與函數(shù)y2的圖象合起來組成函數(shù)y3的圖象.若直線y=kx+2與函數(shù)y3的圖象剛好有兩個交點,則滿足條件的k的值為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正方形ABCD的邊長為4,一個以點A為頂點的45°角繞點A旋轉,角的兩邊分別與BC、DC的延長線交于點E、F,連接EF,設CE=a,CF=b.
(1)如圖1,當a=4時,求b的值;
(2)當a=4時,如圖2,求出b的值;
(3)如圖3,請寫出∠EAF繞點A旋轉的過程中a、b滿足的關系式,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相較于A(2,3),B(﹣3,n)兩點.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請直接寫出不等式kx+b>的解集;
(3)過點B作BC⊥x軸,垂足為C,求S△ABC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知BO是△ABC的AC邊上的高,其中BO=8,AO=6,CO=4,點M以2個單位長度/秒的速度自C向A在線段CA上作勻速運動,同時點N以5個單位長度/秒的速度自A向B在射線AB上作勻速運動,MN交OB于點P.當M運動到點A時,點M、N同時停止運動.設點M運動時間為t.
(1)線段AN的取值范圍是______.
(2)當0<t<2時,
①求證:MN:NP為定值.
②若△BNP與△MNA相似,求CM的長.
(3)當2<t<5時,若△BNP是等腰三角形,求CM的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC的三個頂點的坐標分別為A(﹣2,3)、B(﹣6,0)、C(﹣1,0).
(1)畫出△ABC關于原點成中心對稱的三角形△A′B′C′;
(2)將△ABC繞坐標原點O逆時針旋轉90°,畫出圖形,直接寫出點B的對應點B″的坐標;
(3)請直接寫出:以A、B、C為頂點的平行四邊形的第四個頂點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列是關于四個圖案的描述.
圖1所示是太極圖,俗稱“陰陽魚”,該圖案關于外圈大圓的圓心中心對稱;
圖2所示是一個正三角形內接于圓;
圖3所示是一個正方形內接于圓;
圖4所示是兩個同心圓,其中小圓的半徑是外圈大圓半徑的三分之二.
這四個圖案中,陰影部分的面積不小于該圖案外圈大圓面積一半的是( )
A.圖1和圖3B.圖2和圖3C.圖2和圖4D.圖1和圖4
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com