【題目】如圖,在矩形ABCD中,AB=16cm,BC=6cm,點(diǎn)P從點(diǎn)A出發(fā)沿AB以3cm/s的速度向點(diǎn)B移動(不與點(diǎn)A,B重合);同時(shí)點(diǎn)Q從點(diǎn)C出發(fā)沿CD以2cm/s的速度向點(diǎn)D移動(不與點(diǎn)C、D重合),經(jīng)過幾秒,△PDQ為直角三角形?說明理由.
【答案】經(jīng)過2s或s或s時(shí),△DPQ為直角三角形,理由見解析
【解析】
根據(jù)題意分當(dāng)∠DPQ=90°時(shí)或當(dāng)∠DQP=90°時(shí)兩種情況進(jìn)一步分析討論即可.
解:經(jīng)過2s或s或s時(shí),△DPQ為直角三角形,理由如下:
∵點(diǎn)P不與點(diǎn)A重合,
∴∠PDQ≠90°,
∴△DPQ為直角三角形分兩種情況,設(shè)運(yùn)動時(shí)間為x秒,
當(dāng)∠DPQ=90°時(shí),△DPQ為直角三角形,
過點(diǎn)Q作QM⊥AB于M,如圖所示:
則四邊形BCQM為矩形,
∴AP=3xcm,BM=CQ=2xcm,則PM=(16﹣5x)cm,DQ=(16﹣2x)cm,
∴(16﹣5x)2+62+(3x)2+62=(16﹣2x)2,
解得:x1=2,x2=;
②當(dāng)∠DQP=90°時(shí),AP+CQ=16,
所以3x+2x=16,
解得:x=,
綜上可知:經(jīng)過2s或s或s時(shí),△DPQ為直角三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司推銷一種產(chǎn)品,公司付給推銷員的月報(bào)酬有兩種方案如圖所示:其中方案所示圖形是頂點(diǎn)在原點(diǎn)的拋物線的部分,方案二所示的圖形是射線, 設(shè)推銷員銷售產(chǎn)品的數(shù)量為(件),付給推銷員的月報(bào)酬為(元),
(1)請直接寫出兩種方案中關(guān)于的函數(shù)關(guān)系式:方案一: ,方案二: ;
(2)當(dāng)銷售量達(dá)到多少件時(shí),兩種方案的月報(bào)酬差額將達(dá)到元?
(3)若公司決定改進(jìn)“方案二”:基本工資元,每銷售件產(chǎn)品再增加報(bào)酬元,當(dāng)推銷員銷售量達(dá)到件時(shí),方案二的月報(bào)酬不低于方案一的月報(bào)酬,求的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,以AC為直徑的⊙O交AB于點(diǎn)D,點(diǎn)E為弧AD的中點(diǎn),連接CE交AB于點(diǎn)F,且BF=BC.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為2,=,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某導(dǎo)彈發(fā)射車在山頂A處進(jìn)行射擊訓(xùn)練的示意圖,點(diǎn)A在y軸上,與原點(diǎn)O的距離是8百米(為了計(jì)算方便,我們把本題中的距離用百米作單位).此導(dǎo)彈發(fā)射車在A處進(jìn)行某個(gè)角度的射擊訓(xùn)練,點(diǎn)M是導(dǎo)彈向右上射出后某時(shí)刻的位置.忽略空氣阻力,實(shí)驗(yàn)表明:導(dǎo)彈射出t秒時(shí),點(diǎn)M,A的水平距離是vt百米,點(diǎn)M與x軸(水平)的豎直距離是(8+vt﹣5t2)百米(v的值由發(fā)射者設(shè)定).在點(diǎn)A和x軸上的點(diǎn)B處觀測射擊目標(biāo)P的仰角分別是a和β,OB=3百米,tanα=.tanβ=.
(1)若v=7,完成下列問題:
①當(dāng)點(diǎn)M,A的水平距離是7百米時(shí),點(diǎn)M到x軸的距離是 百米;
②設(shè)點(diǎn)M坐標(biāo)為(x,y),求y與x的關(guān)系式(不必寫x的取值范圍).
(2)按(1)的射擊方式,能否命中目標(biāo)P?請說明理由.
(3)目標(biāo)以m百米/秒的速度從點(diǎn)P向右移動,當(dāng)v時(shí),若能使目標(biāo)被擊中,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+c的頂點(diǎn)(0,5),且過點(diǎn)(﹣3,),先求拋物線的解析式,再解決下列問題:
(應(yīng)用)問題1,如圖2,線段AB=d(定值),將其彎折成互相垂直的兩段AC、CB后,設(shè)A、B兩點(diǎn)的距離為x,由A、B、C三點(diǎn)組成圖形面積為S,且S與x的函數(shù)關(guān)系如圖所示(拋物線y=ax2+bx+c上MN之間的部分,M在x軸上):
(1)填空:線段AB的長度d= ;彎折后A、B兩點(diǎn)的距離x的取值范圍是 ;若S=3,則是否存在點(diǎn)C,將AB分成兩段(填“能”或“不能”) ;若面積S=1.5時(shí),點(diǎn)C將線段AB分成兩段的長分別是 ;
(2)填空:在如圖1中,以原點(diǎn)O為圓心,A、B兩點(diǎn)的距離x為半徑的⊙O;畫出點(diǎn)C分AB所得兩段AC與CB的函數(shù)圖象(線段);設(shè)圓心O到該函數(shù)圖象的距離為h,則h= ,該函數(shù)圖象與⊙O的位置關(guān)系是 .
(提升)問題2,一個(gè)直角三角形斜邊長為c(定值),設(shè)其面積為S,周長為x,證明S是x的二次函數(shù),求該函數(shù)關(guān)系式,并求x的取值范圍和相應(yīng)S的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展陽光體育活動,每位同學(xué)從籃球、足球、乒乓球和羽毛球四項(xiàng)體育運(yùn)動項(xiàng)目中選擇自己最喜歡的一項(xiàng)訓(xùn)練.學(xué)校體育組對八年級(1)班、(2)班同學(xué)參加體育活動的情況進(jìn)行了調(diào)查,結(jié)果如圖所示:
(1)求八年級(2)班參加體育運(yùn)動的人數(shù),并把扇形統(tǒng)計(jì)圖和折線統(tǒng)計(jì)圖補(bǔ)充完整.
(2)今年重慶5月開展中學(xué)生“陽光體育”技能大賽. 學(xué)校打算從八年級(1)、(2)選派兩個(gè)優(yōu)秀體育運(yùn)動項(xiàng)目去參賽.產(chǎn)生的辦法是這樣的:先組織八年級(1)班和(2)班的相同項(xiàng)目的興趣小組對決產(chǎn)生一個(gè)優(yōu)勝隊(duì),然后學(xué)校從產(chǎn)生出的四個(gè)優(yōu)勝隊(duì)中隨機(jī)抽取兩個(gè)隊(duì)代表學(xué)校參賽.請你用列表法或畫樹形圖求選派兩隊(duì)恰好是乒乓球隊(duì)和籃球隊(duì)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,以為邊作等邊,延長,分別交于點(diǎn),連接、、與相交于點(diǎn),給出下列結(jié)論:①;②;③;④,其中正確的是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,AD是⊙O的弦,BC是⊙O的切線,切點(diǎn)為B.
(1)求證:;
(2)若AB=5,AD=8,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖示,正方形ABCD的頂點(diǎn)A在等腰直角三角形DEF的斜邊EF上,EF與BC相交于點(diǎn)G,連接CF.
①求證:△DAE≌△DCF;
②求證:△ABG∽△CFG.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com