【題目】如圖1,拋物線(xiàn)y=ax2+bx+c的頂點(diǎn)(0,5),且過(guò)點(diǎn)(﹣3,),先求拋物線(xiàn)的解析式,再解決下列問(wèn)題:
(應(yīng)用)問(wèn)題1,如圖2,線(xiàn)段AB=d(定值),將其彎折成互相垂直的兩段AC、CB后,設(shè)A、B兩點(diǎn)的距離為x,由A、B、C三點(diǎn)組成圖形面積為S,且S與x的函數(shù)關(guān)系如圖所示(拋物線(xiàn)y=ax2+bx+c上MN之間的部分,M在x軸上):
(1)填空:線(xiàn)段AB的長(zhǎng)度d= ;彎折后A、B兩點(diǎn)的距離x的取值范圍是 ;若S=3,則是否存在點(diǎn)C,將AB分成兩段(填“能”或“不能”) ;若面積S=1.5時(shí),點(diǎn)C將線(xiàn)段AB分成兩段的長(zhǎng)分別是 ;
(2)填空:在如圖1中,以原點(diǎn)O為圓心,A、B兩點(diǎn)的距離x為半徑的⊙O;畫(huà)出點(diǎn)C分AB所得兩段AC與CB的函數(shù)圖象(線(xiàn)段);設(shè)圓心O到該函數(shù)圖象的距離為h,則h= ,該函數(shù)圖象與⊙O的位置關(guān)系是 .
(提升)問(wèn)題2,一個(gè)直角三角形斜邊長(zhǎng)為c(定值),設(shè)其面積為S,周長(zhǎng)為x,證明S是x的二次函數(shù),求該函數(shù)關(guān)系式,并求x的取值范圍和相應(yīng)S的取值范圍.
【答案】拋物線(xiàn)的解析式為:y=﹣x2+5;(1)20<x<2,不能,+和﹣;(2),相離或相切或相交;(3)相應(yīng)S的取值范圍為S>c2.
【解析】
將頂點(diǎn)(0,5)及點(diǎn)(﹣3,)代入拋物線(xiàn)的頂點(diǎn)式即可求出其解析式;
(1)由拋物線(xiàn)的解析式先求出點(diǎn)M的坐標(biāo),由二次函數(shù)的圖象及性質(zhì)即可判斷d的值,可由d的值判斷出x的取值范圍,分別將S=3和1.5代入拋物線(xiàn)解析式,即可求出點(diǎn)C將線(xiàn)段AB分成兩段的長(zhǎng);
(2)設(shè)AC=y,CB=x,可直接寫(xiě)出點(diǎn)C分AB所得兩段AC與CB的函數(shù)解析式,并畫(huà)出圖象,證△OPM為等腰直角三角形,過(guò)點(diǎn)O作OH⊥PM于點(diǎn)H,則OH=PM=,分情況可討論出AC與CB的函數(shù)圖象(線(xiàn)段PM)與⊙O的位置關(guān)系;
(3)設(shè)直角三角形的兩直角邊長(zhǎng)分別為a,b,由勾股定理及完全平公式可以證明S是x的二次函數(shù),并可寫(xiě)出x的取值范圍及相應(yīng)S的取值范圍.
解:∵拋物線(xiàn)y=ax2+bx+c的頂點(diǎn)(0,5),
∴y=ax2+5,
將點(diǎn)(﹣3,)代入,
得=a×(﹣3)2+5,
∴a= ,
∴拋物線(xiàn)的解析式為:y= ;
(1)∵S與x的函數(shù)關(guān)系如圖所示(拋物線(xiàn)y=ax2+bx+c上MN之間的部分,M在x軸上),
在y=,當(dāng)y=0時(shí),x1=2,x2=﹣2,
∴M(2,0),
即當(dāng)x=2時(shí),S=0,
∴d的值為2;
∴彎折后A、B兩點(diǎn)的距離x的取值范圍是0<x<2;
當(dāng)S=3 時(shí),設(shè)AC=a,則BC=2﹣a,
∴a(2﹣a)=3,
整理,得a2﹣2a+6=0,
∵△=b2﹣4ac=﹣4<0,
∴方程無(wú)實(shí)數(shù)根;
當(dāng)S=1.5時(shí),設(shè)AC=a,則BC=2﹣a,
∴a(2﹣a)=1.5,
整理,得a2﹣2a+3=0,
解得,
∴當(dāng)a=時(shí),2﹣a=,
當(dāng)a=時(shí),2﹣a=,
∴若面積S=1.5時(shí),點(diǎn)C將線(xiàn)段AB分成兩段的長(zhǎng)分別是和;
故答案為:2,0<x<2,不能,和;
(2)設(shè)AC=y,CB=x,
則y=﹣x+2,如圖1所示的線(xiàn)段PM,
則P(0,2),M(2,0),
∴△OPM為等腰直角三角形,
∴PM=OP=2,
過(guò)點(diǎn)O作OH⊥PM于點(diǎn)H,
則OH=PM=,
∴當(dāng)0<x<時(shí),AC與CB的函數(shù)圖象(線(xiàn)段PM)與⊙O相離;
當(dāng)x=時(shí),AC與CB的函數(shù)圖象(線(xiàn)段PM)與⊙O相切;
當(dāng)<x<2時(shí),AC與CB的函數(shù)圖象(線(xiàn)段PM)與⊙O相交;
故答案為:,相離或相切或相交;
(3)設(shè)直角三角形的兩直角邊長(zhǎng)分別為a,b,
則 ,
∵(a+b)2=a2+b2+2ab,
∴(x﹣c)2=c2+2ab,
∴,
即S=,
∴x的取值范圍為:x>c,
則相應(yīng)S的取值范圍為S>.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在銳角△ABC中,BC=10,AC=11,△ABC的面積為33,點(diǎn)P是射線(xiàn)CA上一動(dòng)點(diǎn),以BP為直徑作圓交線(xiàn)段AC于點(diǎn)E,交射線(xiàn)BA于點(diǎn)D,交射線(xiàn)CB于點(diǎn)F.
(1)當(dāng)點(diǎn)P在線(xiàn)段AC上時(shí),若點(diǎn)E為中點(diǎn),求BP的長(zhǎng).
(2)連結(jié)EF,若△CEF為等腰三角形,求所有滿(mǎn)足條件的BP值.
(3)將DE繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°,當(dāng)點(diǎn)E的對(duì)應(yīng)點(diǎn)E'恰好落在BC上時(shí),記△DBE'的面積為S1,△DPE的面積S2,則的值為 .(直接寫(xiě)出答案即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在扇形OMN中,∠MON=90°,OM=6,△ABC是扇形的內(nèi)接三角形,其中A、C、B分別在半徑OM、ON和弧MN上,∠ACB=90°,BC:AC=3:8,則線(xiàn)段BC的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△DEF都是直角三角形,∠ACB=∠DFE=90°,AB=DE,頂點(diǎn)F在BC上,邊DF經(jīng)過(guò)點(diǎn)C,點(diǎn)A,E在BC同側(cè),DE⊥AB.
(1)求證:△ABC≌△DEF;
(2)若AC=11,EF=6,CF=4,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是矩形,E為CD邊上一點(diǎn),且AE、BE分別平分∠DAB、∠ABC.
(1)求證:△ADE≌△BCE;
(2)已知AD=3,求矩形的另一邊AB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=16cm,BC=6cm,點(diǎn)P從點(diǎn)A出發(fā)沿AB以3cm/s的速度向點(diǎn)B移動(dòng)(不與點(diǎn)A,B重合);同時(shí)點(diǎn)Q從點(diǎn)C出發(fā)沿CD以2cm/s的速度向點(diǎn)D移動(dòng)(不與點(diǎn)C、D重合),經(jīng)過(guò)幾秒,△PDQ為直角三角形?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩車(chē)分別從A、B兩地同時(shí)出發(fā),在同一條公路上,勻速行駛,相向而行,到兩車(chē)相遇時(shí)停止.甲車(chē)行駛一段時(shí)間后,因故停車(chē)0.5小時(shí),故障解除后,繼續(xù)以原速向B地行駛,兩車(chē)之間的路程y(千米)與出發(fā)后所用時(shí)間x(小時(shí))之間的函數(shù)關(guān)系如圖所示.
(1)求甲、乙兩車(chē)行駛的速度V甲、V乙.
(2)求m的值.
(3)若甲車(chē)沒(méi)有故障停車(chē),求可以提前多長(zhǎng)時(shí)間兩車(chē)相遇.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=8,BC=10,AC=12,D是AC邊上一點(diǎn),且AB2=ADAC,連接BD,點(diǎn)E、F分別是BC、AC上兩點(diǎn)(點(diǎn)E不與B、C重合),∠AEF=∠C,AE與BD相交于點(diǎn)G.
(1)求BD的長(zhǎng);
(2)求證△BGE∽△CEF;
(3)連接FG,當(dāng)△GEF是等腰三角形時(shí),直接寫(xiě)出BE的所有可能的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線(xiàn)y=x2+(k﹣1)x﹣k與直線(xiàn)y=kx+1交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè).
(1)如圖1,當(dāng)k=1時(shí),直接寫(xiě)出A,B兩點(diǎn)的坐標(biāo);
(2)在(1)的條件下,點(diǎn)P為拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),且在直線(xiàn)AB下方,試求出△ABP面積的最大值及此時(shí)點(diǎn)P的坐標(biāo);
(3)如圖2,拋物線(xiàn)y=x2+(k﹣1)x﹣k(k>0)與x軸交于點(diǎn)C、D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)),在直線(xiàn)y=kx+1上是否存在唯一一點(diǎn)Q,使得∠OQC=90°?若存在,請(qǐng)求出此時(shí)k的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com